BRICKS TO BYTES?

HERGA CONFERENCE 2013
ADELAIDE 25-27 SEPTEMBER

HIGHER EDUCATION RESEARCH GROUP ADELAIDE
The University wishes to acknowledge the Kaurna people, the original custodians of the Adelaide Plains and the land on which the University of Adelaide’s campuses at North Terrace, Waite, Thebarton and Roseworthy are built.

HERGA CHAIR
Edward Palmer
School of Education,
The University of Adelaide

CONFERENCE COMMITTEE CHAIR
Thomas Wanner
Geography, Environment and Population
The University of Adelaide

CONFERENCE COMMITTEE
Juhani Tuovinen
Tabor College

Kay Govin
School of Paediatrics and Reproductive Health
The University of Adelaide

Sophie Karanicolas
School of Dentistry, The University of Adelaide

Cathy Snelling
School of Dentistry, The University of Adelaide

Lea McBride
School of Education, The University of Adelaide

ACKNOWLEDGEMENTS
Karl Larsen
this big design

Lea McBride
School of Education, The University of Adelaide
Contents

04 Maps
06 Timetable
13 Keynote Addresses
19 Panel Sessions
23 Workshop Abstracts
31 Session Abstracts
MAP: LOWER NAPIER BUILDING
Venue: Lower Napier **Date:** Wednesday 25 September

<table>
<thead>
<tr>
<th>START</th>
<th>DURATION</th>
<th>EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.30</td>
<td>30 MINS</td>
<td>REGISTRATION</td>
</tr>
</tbody>
</table>

WORKSHOP SESSIONS

Please note: Agans workshop cancelled

| 10.00 | 3 HRS | Outcomes of the scaffolded development of research skills across degree programs
Willison |
|-------|-------|---|
| | | Effective teaching and support of students from low socio-economic backgrounds
Nelson, Smith, Kift & Creagh |
| 1.00 | 1 HR | LUNCH |
| 2.00 | 3 HRS | Good practice for safeguarding student learning engagement
Nelson & Creagh |
Venue: Lower Napier **Date:** Thursday 26 September

<table>
<thead>
<tr>
<th>START</th>
<th>DURATION</th>
<th>EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.30</td>
<td>20 MINS</td>
<td>REGISTRATION</td>
</tr>
<tr>
<td>8.50</td>
<td>10 MINS</td>
<td>WELCOME</td>
</tr>
<tr>
<td>9.00</td>
<td>10 MINS</td>
<td>OPENING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Warren Bebbington, Vice Chancellor & President, The University of Adelaide</td>
</tr>
<tr>
<td>9.10</td>
<td>80 MINS</td>
<td>KEYNOTE ADDRESS 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Designing for mobile technologies in authentic learning environments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor Jan Herrington</td>
</tr>
<tr>
<td>10.30</td>
<td>30 MINS</td>
<td>MORNING TEA</td>
</tr>
</tbody>
</table>
Venue: Lower Napier **Date:** Thursday 26 September

<table>
<thead>
<tr>
<th>START</th>
<th>DURATION</th>
<th>EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.00</td>
<td>30 MINS</td>
<td>Evaluation of Facebook © to Create an Online Learning Community in an Undergraduate Animal Science Class Whittaker, Howarth & Lymn</td>
</tr>
<tr>
<td>11.30</td>
<td>30 MINS</td>
<td>Where have all our students gone? Promoting positive student outcomes in the digital age through peer driven student communities – A case study of The Unicoach Randall-Smith, Dianati, Nedosyko, Devlin & Burke Da Silva</td>
</tr>
<tr>
<td>12.00</td>
<td>30 MINS</td>
<td>Interactive e-learning resources for the development of diagnostic abilities and research skills Walker, Conran, Trengove, Loveys & Able</td>
</tr>
<tr>
<td>12.30</td>
<td>30 MINS</td>
<td>Little Big Learning: Video Games in Education Habel & Hope</td>
</tr>
<tr>
<td>1.00</td>
<td>1 HR</td>
<td>LUNCH</td>
</tr>
</tbody>
</table>
Venue: Lower Napier Date: Thursday 26 September

<table>
<thead>
<tr>
<th>START</th>
<th>DURATION</th>
<th>EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Social Media/New Technologies</td>
<td>LG 28**</td>
<td>**21st Century Classroom</td>
</tr>
<tr>
<td>2.00</td>
<td>30 MINS</td>
<td>Using online discussion forums creatively</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abigail</td>
</tr>
<tr>
<td>2.30</td>
<td>30 MINS</td>
<td>Disruptive Pedagogy: The story of the Padagogy Wheel … so far!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carrington</td>
</tr>
<tr>
<td>3.00</td>
<td>30 MINS</td>
<td>My Wine World: Development and evaluation of an iPad application as an e-learning tool for technical wine assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilkinson & Grbin</td>
</tr>
<tr>
<td>3.30</td>
<td>30 MINS</td>
<td>Learning through virtual class rooms - an insight of use of Augmented Reality in online learning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pandya</td>
</tr>
<tr>
<td>4.00</td>
<td>1 HR</td>
<td></td>
</tr>
</tbody>
</table>
Day 3

Venue: Lower Napier **Date:** Friday 27 September

<table>
<thead>
<tr>
<th>START</th>
<th>DURATION</th>
<th>EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.45</td>
<td>25 MINS</td>
<td>(registration)</td>
</tr>
<tr>
<td>9.10</td>
<td>80 MINS</td>
<td>KEYNOTE ADDRESS 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LG 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.30</td>
<td>30 MINS</td>
<td>MORNING TEA</td>
</tr>
<tr>
<td>START</td>
<td>DURATION</td>
<td>EVENT</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONCURRENT SESSIONS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**Curriculum Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel Universes: Student-Teacher Expectations and Interactions in Online vs On campus teaching and learning environment Wanner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**Assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Student Learning by Way of Creating Assessment Items Jersmann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**Academic/Professional Skills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can we teach professional skills in the cyber world? Creating e-learning legal skills development tools Hewitt & Stubbs</td>
</tr>
<tr>
<td>11.00</td>
<td>30 MINS</td>
<td>Designing a transcultural learning environment with a diversity of background: encounter with e-learning and face to face communication. Tomita</td>
</tr>
<tr>
<td>11.30</td>
<td>30 MINS</td>
<td>Keeping it real: can technology assist to create an environment for authentic assessment? Ankor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outcomes of the scaffolded development of research skills across degree programs Willison</td>
</tr>
<tr>
<td>12.00</td>
<td>30 MINS</td>
<td>Developing curriculum in a new educational world Parker & Gillham</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessment Moderation - Progress Report on OLT Benchmarking of Assessment Moderation Project Tuovinen, Dachs, Fernandez-Goldborough & Dobson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establishing and Maintaining a Dynamic Learning & Teaching Community via an Online Platform Caon-Parsons & Nicholas</td>
</tr>
<tr>
<td>12.30</td>
<td>30 MINS</td>
<td>Face to face to online’: adapting climate change adaptation curricula in the tertiary environment Nursey-Bray & Palmer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repositioning Educational ICTs: The new and challenging as mechanisms for aligning learning encounters and assessment Jovanovic, Ohly & Houston</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The use of animations and the ‘teach-back’ technique to facilitate an understanding of health literacy levels within the general community Pearce, Birbeck & May</td>
</tr>
<tr>
<td>1.00</td>
<td>1 HR</td>
<td>LUNCH</td>
</tr>
</tbody>
</table>

Venue: Lower Napier **Date:** Friday 27 September
Venue: Lower Napier **Date:** Friday 27 September

<table>
<thead>
<tr>
<th>START</th>
<th>DURATION</th>
<th>EVENT</th>
</tr>
</thead>
</table>
| **2.00** | **30 MINS** | **Curriculum Development | LG 28**
Delivering a Small-Group Discovery Experience in Large Classes
Jerram, Stubbs, Westphalen & Metha |
| **2.30** | **30 MINS** | **Assessment | LG 24**
Teaching and Learning Using News Items Submitted by Students
Cao |
Not Reinventing the Wheel: Two band-aid solutions to address feedback in French language courses (plus one happy, unintended consequence)
McCann |
Online Teacher Education in Professional Experiences Courses: Challenges and Dilemmas
Kehrwald, Lucas, McInnes & Peters |
| **3.00** | **30 MINS** | **Academic/Professional Skills | LG 29**
Strengthening the information literacy skills of first year Science & Engineering students for 21st century learning
Ing, Smallhorn, Young, Burke da Silva & Deller-Evans |
| **3.30** | **30 MINS** | **Using the Learning Activity Management System (LAMS) to enhance student engagement in Science**
Riggs, Schultz, Scott & Loveys |
| **3.30** | **30 MINS** | **AFTERNOON TEA** |
| **4.00** | **CLOSE** |
Keynote Addresses

15 Designing for mobile technologies in authentic learning environments
 Professor Jan Herrington

17 The planets of future learning
 Professor Gilly Salmon
Designing for mobile technologies in authentic learning environments

Jan Herrington
Professor of Education, Murdoch University, Australia

Mobile technologies are steadily making their way into higher education contexts, as more and more students bring mobile devices (such as mobile phones and tablets/iPads) into classes. With many new technologies, however, the tendency is to prohibit their use, or to use them in more conventional ways—with many teachers reverting to uninspiring methods of teaching that fail to adapt to the possibilities that these new technologies present. How can teachers make the most of student-owned mobile phones and other devices as powerful cognitive tools? This keynote will introduce elements of authentic learning and demonstrate—in addition to some misconceptions—how its principles can be implemented successfully within mobile learning pedagogy. Resources and links for mobile learning will also be shared including a recently developed dynamic mobile learning website.

Website to accompany keynote
http://AuthenticLearning.info/HERGA2013/

Dr Jan Herrington is a Professor of Education at Murdoch University in Perth, Western Australia, where she teaches in the educational technology area in the School of Education, including a compulsory first year unit in the BEd called Living and Learning with Technology. She has been active in the promotion and support of the effective use of educational technologies in learning in schools and universities for over two decades. In this time, she has co-written or edited a range of books specifically for teachers in higher education on a variety of technology and teaching-related subjects, including Authentic learning environments in higher education (with Anthony Herrington), and most recently, A guide to authentic e-learning (with Thomas C Reeves and Ron Oliver) which was winner of the AECT Outstanding Book of the Year Award in 2010.

Jan’s current research focuses on authentic learning, the design of effective online learning environments for schools and higher education, and mobile learning. She has led two ARC grants investigating authentic tasks and the design-research approach. She has published over 150 refereed journal articles, conference papers and chapters. She was the Project Leader on the ALTC funded project: New technologies: New pedagogies (2006-2008), which investigated pedagogies appropriate to mobile learning. She is a former Fulbright Scholar who, in 2002, conducted research in authentic learning environments at the University of Georgia, USA. She has won many awards for her research including the Association for Educational Communication and Technology (AECT) Young Researcher of the Year Award, and several Outstanding Paper awards at international conferences, most recently at ascilite 2010, Global Learn 2011, and IADIS, 2012.

RELEVANT LINKS:
www.authenticlearning.info/AuthenticLearning/
www.authenticlearning.info/MobileLearning/Home.html
The planets of future learning

Gilly Salmon
Pro Vice-Chancellor, Learning Transformations, Swinburne University of Technology

The world of education is subject to unprecedented disruption and challenge... Some say a ‘revolution’. Every week another innovation is championed, another technology lauded. This talk will explore one way of examining the uncertainties for the future; exploring possible, preferable and viable ways forward...with some insight on how to prepare, how to take decisions even.

The four scenarios consider elements close to our hearts and practice: learners needs and expectations, assessment, teaching technologies and philosophies. Professor Salmon hopes to promote strategic conversations and asks ‘what planet are you on’?. Not for the faint hearted.

Professor Gilly Salmon is one of the world’s leading thinkers in online learning. She researches and publishes widely on the themes of innovation and change in Higher Education and the exploitation of new technologies of all kinds in the service of learning.

She is internationally renowned for her significant contributions to online education, including research, innovation, program design, teaching methods and the use of new technologies.

Gilly is Pro Vice-Chancellor, Learning Transformations at Swinburne University of Technology. She took up her appointment at Swinburne in January 2012.

Previously, she was the Executive Director and Professor (Learning Futures) at the Australian Digital Futures Institute, based in the University of Southern Queensland, Australia and was Professor of E-learning and Learning Technologies, and Head of the Beyond Distance Research Alliance and the Media Zoo, at the University of Leicester in the United Kingdom.

Recent publications include Podcasting for Learning in Universities and Learning in Groups. The third edition of her seminal book E-moderating was published in 2011. The 2nd edition of E-tivities is available from June 2013.

WEB AND SOCIAL MEDIA SITES:
www.e-moderating.com
www.e-tivities.com
www.gillysalmon.com
Facebook: facebook.com/gillysalmononlinelarning
Twitter: GILLYSALMON
NOTES:
Panel Session

21 Delivering a Small-Group Discovery Experience in Large Classes
Jerram, Stubbs, Westphalen & Metha
Panel: Delivering a Small-Group Discovery Experience in Large Classes

Cate Jerram Business School, University of Adelaide
Matthew Stubbs Law School, University of Adelaide
Linda Westphalen School of Education, University of Adelaide
Greg Metha School of Chemistry and Physics, University of Adelaide

KEY WORDS: Large classes; small groups; Small-Group-Discovery-Experience

In 2012, the Vice-Chancellor of the University of Adelaide published a Strategic Vision document “Beacon of Enlightenment” (Bebbington, 2012) to focus and shape the future of the University. Subsequently, in 2013, the “Beacon of Enlightenment Operational Plan” was released (Bebbington, 2013). A critical component of both the strategic vision and the operational plan are a commitment to a specific pedagogical approach that the University of Adelaide will offer all commencing 2014 students that includes Small-Group Discovery Experiences (SGDE) every year.

As its name implies, the SGDE is based on providing students with the opportunity to experience the scholarship of discovery (Boyer, 1990) in small groups. The SGDE is designed to address changing needs in student learning for new times, and respond positively to the difficulties faced by modern Universities due to the division between research and teaching, exponential growth in student numbers, persistent decreases in funding, and the consequent development of ever-larger classes and higher staff:student ratios. In response to this reality, the SGDE proposes exposing students to face-to-face interaction with experienced (research and professional) academics in small groups at least twice in a year to teach, stimulate and enable students’ active engagement in research and the discovery-based learning that develops research skills.

In addition to offering transformational opportunities, commitment to the pedagogical strategy of the SGDE involves considerable challenges. These include the necessity of reshaping and redesigning the curriculum and the way in which it is delivered within a short timeframe. The challenge is more critical for academics who teach large courses – particularly first year courses with high staff:student ratios – especially in professional disciplines where the resources available in tertiary education are ‘stretched to breaking point’ (Peden and Riley, 2005). These challenges are not unique to the University of Adelaide or its SGDE, but are true for all disciplines throughout Higher Education with large numbers, high staff:student ratios, and a need for small-group learning (Altbach, Reisberg & Rumbley, 2009).

Selection processes for entry to the academy tend to prioritise evidence of discipline research strength over expertise in pedagogy or education. Faced with demands for enhanced engagement with multi modal learning and new pedagogical practices, many academics struggle to find the resources they need to meet the challenge (Rowland et al, 1998). Although there is research addressing these issues, many academics lack the time (and sometimes the expertise) needed to locate relevant materials, analyse their quality, pedagogical soundness or usefulness and identify which solutions will best address their needs (Winefield, Boyd, & Pignata, 2008; Rowland et al, 1998).

To seize the opportunities offered by the introduction of the SGDE, and the proliferation of pedagogical and technological enhancements more generally, academics should maximise their opportunities for collegial learning to overcome the challenges identified above. It is possible to incorporate discovery-based learning, and do it in small groups, despite often oppressive numbers, without enormous resource increases. Academics from various disciplines, schools and faculties throughout the University have already begun to engage with these opportunities to evolve their pedagogical approaches needed in the University of the future. Some have done so in early response to the Beacon of Enlightenment (Bebbington, 2012) requirements, benefiting from participation in structured SGDE workshops provided by the University. Others have been working with pedagogical approaches for a number of years that either directly feed into the SGDE or provide the opportunity to reallocate existing resources in order to facilitate offering the SGDE.
This panel will look at approaches – past, present and future – they have adopted and adapted themselves at syllabus, curriculum, and course level, as well as providing a “taster” of “how-to” manage small-group interactivity in large classes, including in lecture theatres. Panel members will bring their experiments and their experiences to bear, sharing what they have done, what has worked (and what hasn’t), and discussing some of the options they have already proven can work with colleagues who are looking to respond to the opportunities (and challenges) posed by the Small-Group Discovery Experience.

REFERENCES

Workshop Abstracts

25 Good practice for safeguarding student learning engagement
 Nelson & Creagh

27 Effective teaching and support of students from low socio-economic backgrounds
 Nelson, Smith, Kift & Creagh

29 Face-to-face features of the flipped classroom facilitated by the Research Skill Development framework.
 Willison, Karanicolas & Snelling
Good practice for safeguarding student learning engagement

Karen Nelson Queensland University of Technology
Tracy Creagh Queensland University of Technology

ABSTRACT

The concept of student engagement is a key factor in student achievement and retention. Knowing this, many Australasian universities design and implement initiatives that monitor student activities for signs that students are at risk of disengaging and to make timely support interventions to encourage (re)engagement. These initiatives are often referred to as programs for monitoring student learning engagement (MSLE). Given the aspiration for social inclusion in higher education, it is absolutely critical that MSLE initiatives are approached from a philosophical, moral and ethical position that is fundamentally aimed at enabling and facilitating attainment and success of all students.

The national project CG10-1730 Good practice for safeguarding student learning engagement in higher education institutions led the establishment of good practices for the Australasian higher education sector in MSLE consistent with the notions of equity and social justice. The key deliverable from this project – the Good Practice Guide contains the Social Justice Framework, a set of social justice principles and suite of resources including case studies from the eight participating institutions, and examples of their good practice and artefacts that exemplify the framework in action. This workshop provides participants with the opportunity to engage with the framework and apply the principles to institutional programs and practices of relevance in their contexts.

Workshop outcomes:

• A review of the relevant literature and evidence underpinning the social justice framework.
• A philosophical and applied understanding of each principle.
• Understanding how to achieve good practice in MSLE in your context/institution.

What you will take away:

• Copies of the social justice framework.
• Examples of MSLE good practice related to each of the principles.
• Ideas for applying the framework to student retention and success initiatives.

Workshop Outline (180 mins including 20 minute break)

• Welcome, introductions and workshop overview (10 mins)
• Presentation of findings, including video stories and discussion (60 mins)
• Break for morning or afternoon tea (20 mins)
• Small group work
 - examining the the social justice framework in the context of your organisation (60 mins)
 - group discussion (20 mins)
• Summary, thank you and close (10 mins)
Effective teaching and support of students from low socio-economic backgrounds

Karen Nelson Queensland University of Technology
Liz Smith Charles Sturt University
Sally Kift James Cook University
Tracy Creagh Queensland University of Technology

The original project Effective teaching and support of students from low socioeconomic backgrounds: Resources for Australian higher education (SP10-1838 2011-2012) focused on identifying and making explicit a series of succinct guidelines to assist the teaching and support of students who come to university with varying diversity in terms of their preparedness for higher education, and social and cultural capital. The project adopted a success-focused approach to identify and document practices and initiatives that had led to students from low socioeconomic backgrounds being successful in their first year. Two major resources were produced in the form of guidelines for institutional leaders and practitioners each of which highlighted policies, programs and practices that had facilitated the success of students from LSES backgrounds. The findings are applicable to a range of higher education contexts and appropriate to be taken up to enhance the teaching and support of all students, irrespective of their background.

The purpose of the extension grant is to further disseminate the findings from this project which are encapsulated in the project resources. In this way this workshop will introduce the conceptual framework “bridging socio-cultural incongruity” that was adopted for the project. The framework will then be illustrated by drawing on video stories and outlining the themes that emerged from the data. Participants will have the opportunity to actively engage with the practical advice and guidelines that arose from the project and to consider the application of these findings to their institutional contexts.

Workshop outcomes:
- An understanding of the social cultural incongruity conceptual framework.
- An understanding of the key themes emerging from the data.
- An understanding of how to apply the findings in your context/institution.

What you will take away:
- Hard copies of the guidelines.
- Examples of practice related to the guidelines and advice.
- Ideas for applying guidelines and advice within your context/institution.

Workshop Outline (180 mins including 20 minute break)
- Welcome, introductions and workshop overview (10 mins)
- Presentation of findings, including video stories and discussion (60 mins)
- Break for morning or afternoon tea (20 mins)
- Small group work
 - examining the advice and guidelines in the context of your organisation (60 mins)
 - group discussion (20 mins)
- Summary, thank you and close (10 mins)

REFERENCES
This workshop is flipped. Its purposes are to give you a good working knowledge of the flipped classroom and to address two core problems in the running of flipped classrooms. To attend you will need, therefore, to complete both a reading in advance and online Multiple-Choice Questions (MCQs) based on the reading. In addition, be ready to actively participate. Together, content in advance, educator-awareness of student understanding, and higher-order learning during class-time are core features of a flipped classroom (Baker, 2000).

How the flipped classroom is enacted depends on such factors as discipline, context, academic workload, available technologies and student characteristics. This workshop will address two major problems with the use of flipped classrooms. The first is the under-utilisation of appropriate conceptual frameworks for flipping the classrooms, which can lead to a lack of clarity of purpose, or a focus on content only. What is appropriate depends on educational outcomes sought; examples of conceptual frameworks include Bloom, et al’s (1956) taxonomy, Kolb’s (1984) Experiential Learning cycle and Threshold Concepts (Meyer & Land, 2005). This workshop models the use of conceptual frameworks by framing the learning environment with the Research Skill Development framework (RSD: Willison & O’Regan, 2007). The RSD has been used in learning and teaching contexts from First Year to Masters in disciplines from Accounting to Zoology and has demonstrated effectiveness to engage student higher order thinking with positive outcomes sustained in the long-term (Willison, 2012).

The second major problem that the workshop addresses is around core elements that educators need to consider to maximise the educative value of flipping. However providing content in advance of lectures with the intention to flip the classroom can escalate problems. For one thing, if students acquire successfully the content in advance some may feel reluctant to attend the face-to-face sessions. Moreover, some students may struggle with understanding the content, or not come prepared at all, giving you a variety of levels of student preparedness. This is not what you want as an educator- to increase the variability of audience content knowledge! Consideration of the following elements for flipped classrooms can help you reduce this variability and maximise face-to-face (f-2-f) higher-order learning.

1. **How and why:** Students understanding both how and why you are flipping the classroom.
2. **Workload shifted:** Students seeing how the workload is ‘shifted’, not increased.
3. **Information on student understanding:** Information on student understanding either before f-2-f or in the early part of the f-2-f. This provides you with the knowledge of the range of student understandings in order that you may focus on the salient elements least understood. This will often be most manageable in large courses with carefully designed MCQs, but there are many other options that we will consider in the workshop.
4. **Conceptual framework:** Flipped learning design framed by a conceptual framework. This provides coherence of design and helps clarify your intentions for the material.
5. **Metacognitive:** Providing student ‘thinking structures’ for a course and relying to a large extent on (4) above. In this workshop the use of the RSD is modelled as a way to enable students to see how you are facilitating their movement from lower order to higher order thinking i.e. they become meta-cognitive. These can be introduced in pre-engagement and reinforced and used f-2-f. Metacognition enables students to be truly reflective, be aware of their own learning progress and potentially to self-actuate improvement.
6. **Value added:** The f-2-f should be perceived by students to be value adding, and saving time from doing things on their own.
7. **Generally socially interactive and always cognitively engaging.**
8. **Space and Time:** the theatre space is considered instead of the lecture format, and the time of 50 minutes (or two hours, etc) to be programmed with this checklist in mind, rather than a content acquisition perspective alone
9. **Lectures and mini-lectures.** Lectures and mini-lectures have their place, and may become increasingly valued by students if flipped classes are done effectively. For example, some concepts are endemically hard to learn, and at times a lecture format may be ideal and efficient. Mini-lectures (5-10 mins) may be used to clarify concepts
that students struggled with in the pre-f2f material, and you will know about this due to (4) above. Mini-lectures may be interspersed in the flipped curriculum where you find these appropriate.

This workshop will provide interactive opportunities to consider how to maximise student preparedness, and avoid the pitfalls of increasing class variability of content knowledge. It will focus on how students may derive the facets of the RSD in the large lecture space and use them in later f2f sessions and subsequently in assessment tasks. It will also provide collaborative time to develop aspects of your own flipped classroom, informed by the RSD. Other foci will include how to manage large student numbers working in teams that need to communicate in awkward fixed seating arrangements; providing novel f2f stimuli that relate to pre-lecture engagement; and enabling researching, problem solving, or critical thinking processes that small student groups can communicate to all other groups in a way that stimulates all, rather than becomes tedious.

When you register for this workshop, you will be provided with the links to the reading and the MCQs.

NOTES:

REFERENCES

Session Abstracts

33 Using online discussion forums creatively
 Abigail

35 Keeping it real: can technology assist to create an environment for authentic assessment?
 Ankor

37 Using the Professional Standards Framework to Integrate Digital Literacy into University Teaching
 Beckmann

39 Practical Classes: The perceived pros and cons of students “getting their hands dirty”
 Botten, Coulson, Palmer, Williamson, Willis & Pearce

41 Teaching and Learning Using News Items Submitted by Students
 Cao

43 Establishing and Maintaining a Dynamic Learning & Teaching Community via an Online Platform
 Caon-Parnson & Nicholas

45 Disruptive Pedagogy: The story of the Pedagogy Wheel … so far!
 Carrington

47 Threshold concepts in a flipped classroom to facilitate learning about health inequalities
 Chittleborough

49 Virtual simulation use in Veterinary and Biological Sciences Education
 Easton & Hamood

51 Are MOOCs an Open or Shut Case?: Assessing the Place of Massive Open Online Courses in the Australian Tertiary Education Landscape
 Evans

53 Little Big Learning: Video Games in Education
 Habel & Hope

55 Can we teach professional skills in the cyber world? Creating e-learning legal skills development tools
 Hewitt & Stubbs

57 Strengthening the information literacy skills of first year Science & Engineering students for 21st century learning
 Ing, Smallhorn, Young, Burke da Silva & Deller-Evans

59 Student Learning by Way of Creating Assessment Items
 Jersmann

61 Anatomy teaching with new technologies: what worked and what didn’t.
 Johnson & Palmer

63 Repositioning Educational ICTs: The new and challenging as mechanisms for aligning learning encounters and assessment
 Jovanovic, Ohly & Houston

65 Online Teacher Education in Professional Experiences Courses: Challenges and Dilemmas
 Kehrwald, Lucas, McInnes & Peters

67 Effective use of online learning resources in the blended experiential learning of engineering drawing
 Kestell & Missingham
69 Not Reinventing the Wheel: Two band-aid solutions to address feedback in French language courses (plus one happy, unintended consequence)
McCann

71 The positive and challenging aspects of "flipping for four hundred"
Milazzo

73 Fostering student interest and promoting deep learning in a laboratory context: A case study in gas laws in first-year chemistry
Norris, Crisp, Read & Köper

75 Face to face to online': adapting climate change adaptation curricula in the tertiary environment
Nursey-Bray & Palmer

77 Learning through virtual class rooms - an insight of use of Augmented Reality in online learning.
Pandya

79 Developing curriculum in a new educational world
Parker & Gillham

81 The use of animations and the 'teach-back' technique to facilitate an understanding of health literacy levels within the general community
Pearce, Birbeck & May

83 Where have all our students gone? Promoting positive student outcomes in the digital age through peer driven student communities - A case study of The Unicoach
Randall-Smith, Dianati, Nedosyko, Devlin & Burke Da Silva

85 Virtual Classrooms: web-based synchronous classroom systems & their potential learning/teaching uses in higher education
Rathore & McEntee

87 Online, face-to-face or both? The tricky task of engaging first year students!
Richardson, King, Parfitt & Olds

89 Using the Learning Activity Management System (LAMS) to enhance student engagement in Science
Riggs, Schultz, Scott & Loveys

91 Designing a transcultural learning environment with a diversity of background: encounter with e-learning and face to face communication.
Tomita

93 Assessment Moderation - Progress Report on OLT Benchmarking of Assessment Moderation Project
Tuovinen, Dachs, Fernandez-Goldborough & Dobson

95 Interactive e-learning resources for the development of diagnostic abilities and research skills
Walker, Conran, Trengove, Loveys & Able

97 Parallel Universes: Student-Teacher Expectations and Interactions in Online vs On campus teaching and learning environment
Wanner

99 Evaluation of Facebook © to Create an Online Learning Community in an Undergraduate Animal Science Class
Whittaker, Howarth & Lymn

101 My Wine World: Development and evaluation of an iPad application as an e-learning tool for technical wine assessment
Wilkinson & Grbin

103 Outcomes of the scaffolded development of research skills across degree programs
Willison

105 Investigation of MyUni on Self and Peer Assessment of Group-Based Honours Projects
Wu, Francis, Chan, Wilson, Chanda, Ng & Cazzolato

107 Experiences in MOOCs: The Students’ Perspective
Zutshi, O’Hare & Rodafinos
Using online discussion forums creatively

Wendy Abigail Lecturer, School of Nursing and Midwifery, Flinders University, Adelaide

KEY WORDS: Innovative and creative teaching strategies

INTRODUCTION

Today educators need innovative teaching strategies to engage students. Use of online discussion forums to enhance student learning are such a strategy teachers are able to use to stimulate interactive online student engagement. However, it has been shown that students lack enthusiasm for online discussion forums particularly if the purpose and structure are not carefully planned [1]. This means that if discussion forums are added onto the course and not assessed then students are less likely to participate[1].

In semester one 2013, a new curriculum for undergraduate nursing students was introduced into the School of Nursing and Midwifery at Flinders University. In one of the new topics, all first year nursing students’ who attended a Professional Experience Placement (PEP) in a community setting were asked to contribute to an online discussion forum which was not grade based. The purpose of the forum was for students to share their experiences with other students where they could reflect on their PEP. Contributions to the forum were not assessed. This paper describes the processes used to attempt to engage students in the discussion forum.

METHOD

Student placements were held over three rounds of places between May to July 2013. All students (n = 391) were asked to contribute to the online discussion forum each week after their PEP. Students in two classes (n= 47) were additionally requested to ‘add a video clip’ of a song that summed up their day. An example was provided by their tutor each week. Face-to-face class discussions on the students’ experiences were held and the music choices also discussed. Only links to music clips were used to comply with copyright requirements.

Ethical approval was granted the Flinders University Research Ethics Committee allowing contact with students retrospectively after all grades had been submitted to allow use of their reflections for research/presentation purposes.

FINDINGS

Of the 391 students in the topic only 27 students with the same tutor (who had 48/391 students) who asked for ‘add a video clip’ to their discussion contributed to the forum. Of these students, in round one 27 students attended PEP where 70.4% (n=19) students responded to the discussion forum in week 1, 7.4% (n=2) in week 2, and 33.3% (n=9) in week 3. In round two 12 students attended PEP where in week 1, 50.0% (n=6) students contributed, with 16.7% (n=2) in week 2 and 8.3% (n=1) in week 3. In round three 7 students attended PEP where in week 1 14.3% (n=1) contributed but there were no further contributions for weeks 2 or 3. This meant that overall, 67.5% students in the ‘add a video clip’ classes contributed to the discussion forum (2 students did not attend PEP), where there were 43 postings with 33 video's and one picture included.

The online contributions by students included discussing in detail the PEP objectives and also discussion on why they chose the particular song/video or picture. Song choices were predominantly chosen based on emotions of inspiration, joy and excitement and ranged from modern tunes to timed classics.

DISCUSSION

The use of music clips stimulated some students to actively participate to an online discussion forum. However, participation was found to be impacted on by tutor enthusiasm and by classroom dynamics. Hence, even though the use of music in teaching has been shown to be an effective teaching method [2], the success of implementing such an innovative strategy is reliant on individual tutor’s personality style and ongoing face-to-face classroom encouragement with students.

REFERENCES

NOTES:
Keeping it real: can technology assist to create an environment for authentic assessment?

Deborah Ankor Director of Professional Programmes, Flinders Law School

What is "authentic assessment"?

"...an assessment requiring students to use the same competencies, or combinations of knowledge, skills and attributes, that they need to apply to the criterion situation in professional life." (Gulikers et al, 2004, p. 69)

Particularly in professional courses, the desire of students to recognize real achievements relevant to their future becomes tangible as they come closer to graduation. Can we, as teachers, assist by providing opportunities for authentic assessment that focuses on authentic achievement? Do we need sophisticated technology in order to do so? Can we provide an effective online environment for authentic assessment?

This paper focuses on a core final year practical legal training subject in a law course. The subject is a requirement for students to be able to be admitted to the profession and is based on competencies set by an external accrediting body.

Until three years ago, the practical legal training subjects were taught in a traditional manner and student engagement was less than optimal.

A curriculum review three years ago provided the catalyst for change. The professional subjects were re-designed taking into account the literature on authentic assessment, particularly the work of Biggs and Tang (2007), Herriman and Herriman (2006) and Gulikers et al (2004).

In attempting to develop a learning environment as close to that of a professional workplace as possible, the issue of available resources was, as always, a constraining factor. As no extra resources were available, it was necessary to rethink the basics, which led us back to the Five Dimensional Framework for authentic assessment proposed by Gulikers et al (2004). Working with that framework and with no more than our Moodle Learning Management system, we were able to create a blended learning environment within which we strive to make explicit links between the subject and "competencies, or combinations of knowledge, skills and attributes, that they need to apply to the criterion situation in professional life" and to use a realistic assessment process including a performance review that challenges them to reflect on what they have learned and for them to justify a passing grade.

Over the three years we have noted considerable improvement in both student engagement and the quality of work produced. We suggest that this is at least partly due to the explicit connection between the process of assessment in the subject and the professional environment into which the students hope to enter.

The paper will discuss the five dimensional framework for authentic assessment and provide an example of how it might be used with only basic resources and technology to improve student engagement, with suggestions as to how it might apply more widely than just professional courses.

REFERENCES

Using the Professional Standards Framework to Integrate Digital Literacy into University Teaching

Elizabeth A. Beckmann Senior Lecturer, Staff Education (Teaching & Learning), Centre for Higher Education, Learning & Teaching, Australian National University

Beetham (2012) argues that defining a particular set of capabilities as a ‘literacy’ implies a society-wide entitlement to these capabilities because i) they are a pre-requisite or foundation for other capabilities, ii) they are critical to an individual’s life chances, and iii) they are essential to the making and sharing of culturally significant meanings. It thus behoves university teachers to engage deeply with the implications of digital literacy—defined as ‘those capabilities which fit an individual for living, learning and working in a digital society’ (Beetham, 2012)—as it gains ascendency across the world. Moreover, whereas the integration of technologies into teaching was previously the domain of the innovative academic, the ubiquity of high level computing power in mobile, wireless devices, and the connectivity fostered by social networking platforms, means that it is now often the students who are demanding that universities use the same technologies with which the students are familiar (JISC e-Learning Programme, 2009). Yet these same students—though ‘confident, positive and enthusiastic’ about their own use of technology—appear less sure about how these technologies could help them learn, and therefore are ‘unwilling to change patterns of study they have used successfully in the past’ (JISC e-Learning Programme, 2009). The observed outcomes may thus be somewhat confused, with students not as confident in their own digital literacy as one might expect, and neither teachers nor learners necessarily focused on digital literacy as a crucial generic skill.

How then can academics teaching in the university sector embrace digital literacy as ‘a nuanced and varied set of capabilities, tuned to the requirements of different roles and the practices of different subject areas’ (Beetham, 2012), and in turn help students enhance their own digital literacy? In other words, if today’s academics must both exemplify and promulgate the knowledge, skills and behaviours that constitute digital literacy, what must they ‘unlearn’ and ‘relearn’, to use Toffler’s terms? This paper examines one way in which the diverse opportunities for quality technology-enhanced learning could be identified. The

REFERENCES

NOTES:
Practical Classes: The perceived pros and cons of students “getting their hands dirty”

James Botten Associate Lecturer; School of Molecular & Biomedical Science, The University of Adelaide
Michelle Coulson Lecturer; School of Molecular & Biomedical Science, The University of Adelaide
Edward Palmer Senior Lecturer; School of Education, The University of Adelaide
Natalie Williamson Lecturer; School of Chemistry & Physics, The University of Adelaide
Craig Willis Lecturer, School of Civil, Environmental and Mining Engineering, The University of Adelaide
Karma Pearce Senior Lecturer, School of Pharmacy and Medical Sciences, UniSA

The concept of practical classes (practicals) is essentially as old as teaching itself - demonstrating a skill or technique that a student can replicate, to theoretically achieve the same outcome. The constructivist tenets of hands-on, experiential and task-based learning are essential in practicals, and provided clear outcomes are defined (Bruck, 2013) they provide learners the opportunity to progress from student to skilled, qualified practitioner.

In recent times however, the capacity to offer authentic and effective practicals to higher education students is under renewed and increasing pressure due to dramatic increases in class sizes. These require significantly increased workload from practical demonstrators, both in assessment (which may adversely affect the quality of feedback provided to students), and supervision requirements. Larger groups reduce the level of engagement and individual responsibility as tasks are distributed over more individuals, resulting in less the opportunity to gain important ‘hands on skills’. A common reaction to such decreases in resources is to scale down the practical component of individual subjects (courses), reducing pressures on staff, but potentially at the cost of educational outcomes.

In some situations the e-learning space has proven to be a boon by replacing hands-on practicals with digital alternatives such as video demonstrations and virtual labs (Bentounsi, 2011; Szymas and Lundin, 2011). However this is not always possible, particularly when a fundamental ‘hands-on’ aspect of the practical is lost. A pilot study found that students do enjoy hands-on practical classes and see real value in them as part of their undergraduate training (Botten, 2010); the present study extends this research by surveying students from chemistry and biology disciplines within the University of Adelaide and University of South Australia. The survey instrument has been designed to gauge a range attitudes towards practical classes, including the perceived relevance to future study/career, the utility of assessments in demonstrating and evaluating practical understanding, and value of practicals in the wider context of their degree programs.

As the authors expected based on prior anecdotal evidence, more than three quarters (78% broad agreement using a seven-point Likert scale) of the 359 students surveyed indicated they enjoyed practicals. However, a more important extension to this student perception was that 83% of students felt that the laboratory skills obtained from practical classes were relevant to their future study, while 71% of students agreed that practicals were relevant to their future career. These and other data obtained demonstrate the importance of hands-on practical classes as part of the student learning experience. While in many cases it is impractical to push for additional practical time, it is clear that the existing practical content should be protected as part of the curriculum. As part of this, it is recommended that where appropriate, an in-depth review be conducted to ensure the relevance and efficiency of the practical assessment tasks to ensure that their authenticity is maintained for the best possible student experience (Kloser et al, 2013).

REFERENCES
Teaching and Learning Using News Items Submitted by Students

Benito Cao Lecturer in Politics, The University of Adelaide

KEY WORDS: news items, teaching and learning, politics, student engagement, critical thinking

This presentation illustrates how news items can be used as an engaging and effective tool for teaching and learning Politics. The activity was devised for a course entitled “Citizenship and Globalisation”, but can be adapted to other Politics courses and other disciplines, especially in the areas of Humanities and Social Sciences.

Students are required to submit by email links to two news items during the semester, one item for each of the two weeks they have been allocated. The link must be accompanied by 200 to 300 words, providing a brief summary of the article (focusing on the content that is relevant to the specific aspect of the course being explored that week) and some engagement with the content of the article. The submissions are assessed as part of the students’ tutorial work.

The quality of the submissions is determined by how well the item allows the group to engage with and/or expand on the relevant aspect of the course explored that week. Students are asked to reflect on why they think the item is relevant, significant and useful for others to read and discuss, and to state those reflections in the email. They are encouraged to use their favourite news sources: newspapers (e.g. The Australian, The Guardian, The New York Times); magazines (e.g. The Economist, Time, Prospect); online news services (e.g. The Huffington Post, Google News); global networks (e.g. CNN, BBC, Al Jazeera); national networks (e.g. ABC, SBS). Students can also submit links to short video clips or songs.

Every week a selection of 3 to 5 items is posted on MyUni, and students are encouraged to read these items as part of their tutorial preparation.

Student surveys carried out at the end of the course over the past three years (2011-2013) reveal that students find this activity very useful in terms of helping them better engage with and understand the content of the course, contextualise and appreciate the relevance of that content, and relate and apply concepts and theories to real life situations.

In addition, the items submitted by the students provide the teacher with a wealth of ideas, news and materials that can be useful to craft lecture notes and slides, thus enhancing the overall quality of the course content. In short, this presentation explains a simple but effective method of using news items for the purposes of teaching and learning that can be useful to courses in the Humanities and the Social Sciences.
NOTES:
Establishing and Maintaining a Dynamic Learning & Teaching Community via an Online Platform

Sandra Caon-Parsons Education Program Manager (TESOL, EAL and Education TESOL electives) English Language Centre, Professional and Continuing Education, University of Adelaide
Carmel Nicholas Education Program Manager (General, Academic, Professional and Specialised English) English Language Centre, Professional and Continuing Education, University of Adelaide

Teacher Learning Communities (TLC) have been recognised as key factors in achieving high level engagement and quality outcomes for both staff and students. Their purpose is to create a shared space in which disciplinary knowledge and issues of practice can be shared and discussed. Thus an overarching pedagogical framework can be maintained and professional development embedded.

However, establishing and maintaining such a community is extremely complex due to such issues as lack of time, space and funding. In our workplace, creating an online community offered a solution to a number of these obstacles. It offered time flexibility, a shared space, a number of technological tools to enhance engagement. In addition it enabled dissemination and collation of both ideas and information.

A learning community encourages teachers to apply research into their practice. Moreover, teachers are able to take on an active role in collecting and sharing their own observational research thus integrating both praxis and reflection. New teachers can benefit from the content focus activities and discourse whilst also bringing a fresh perspective and recent training into the forum thus increasing the knowledge and awareness of their more experienced colleagues.

After investigation it was decided to utilise the University’s Blackboard platform. Although it offered some challenges it was immediately accessible to all staff members. This provided a technical solution as a shared communication area but for it to succeed as a learning community considerable architecture and design elements needed to be established and maintained.

Four main roles, pedagogical, social, managerial and co-ordination, are required when developing and operating an online learning community. The choices of technology made can impact on the interaction and engagement levels of the users. As in the non-virtual world the success of group meetings can either be inhibited or enhanced due to simple aspects such as the quality of the space and seating arrangements. Therefore our goal was to create a strong structure with fixed multiple “rooms” which had a simple interface, ie, were easy to enter and exit from. These areas were designated to be used as either convenor uploaded content zones or interactive zones. In order to preserve the integrity of the structure the locus of control was established by enrolling participants as students and the TLC convenors maintained instructor status.

Design as well as architecture was key feature. Research has established that users make decisions on the usefulness and user friendliness of a system based on their reactions to the aesthetic environment. The online environment needs to motivate by being aesthetically pleasing, well organized, and utilising multi-modal content and features to stimulate interest.

Another design element is the method used to ensure participation is diverse and meaningful. Current activities range from responding to resources in the fixed content area (conference or lecture zones) or interacting via group blogs or discussion forums (workshop zone) to creating resources to share using production technologies.

A further important factor in maximising participation is to set clear expectations and to allocate some of the regular paid meeting time to TLC activities (asynchronously).

Our initial experience has found the online platform has enabled a teachers’ learning community to develop. Though there have been some challenges there have been added benefits. The online platform has facilitated extra research capacity though providing tools for collection and collation and shared zones for data access and storage.

Through participation staff have been utilising a range of tools and have been exposed to a variety of online exemplars. This has meant that staff have been able to develop their information communication technology knowledge and skills along the way. The online nature of the community has also helped to counteract the issue of isolation which can be a regular experience for many within a highly casualised workplace environment.
REFERENCES

Levine, T.H. (2010), Tools for the study and design of collaborative teacher learning: The affordances of different conceptions of teacher community and activity. Teacher Education Quarterly, 37, California Council of Teacher Education

NOTES:
This presentation is about how a useful info-graphic is evolving into a practical learning design model that helps teachers and students learn together. The Padagogy Wheel (no it is not a typo) was first published in July 2012 as an aid to help teachers understand how to approach iPads and in particular the use of Apps. It grew out of years of sharing with academics and teachers about the need for the pedagogy to drive the technology and not the other way around. Now it has moved way past that.

The development of the Padagogy Wheel started with the conventional Bloom’s taxonomy wheel which I first discovered on the website of Paul Hopkin’s educational consultancy website (mmiweb.org.uk) That wheel was produced by Sharon Artley and was an adaption of Kathwohl and Anderson’s (2001) adaption of Bloom (1956). I also have to acknowledge the cutting edge work of Andrew Churches in NZ with The Educational Origami Wiki and blog (edorigami.wikispaces.com) with his work with web 2.0 applications and where they fit in the hierarchy. The idea to further adapt it for the pedagogy possibilities with mobile devices, in particular the iPad, I have to acknowledge the creative work of Kathy Schrock from her website Bloomin’ Apps (schrockguide.net)

The new dimension I added to the wheel was grouping the iPad apps according to the Cognitive Domain Categories and building them into the wheel. Version 1 was published in July 2012. I was thrilled with the response, people quickly began to see the potential - it helped them to map the use of apps to their learning outcomes. But wait there’s more.

Version two (V2) followed early 2013 with adding to the core of the wheel, graduate attributes and capabilities. Also the SAMR model developed by Ruben R. Puentedura’s (see his Weblog - hippasus.com/rpweblog/) was added to the outer rim to help teachers think about how to get the best out of the technology. It was becoming clear this is an evolving model and one month later Version three (V3) followed with more on graduate attributes, capabilities and another core consideration - that of motivation. I have also further developed an approach to get the best use out of the wheel and connected Immersive Learning pedagogy.

The Padagogy Wheel Model is definitely meeting a need in teachers for a model to help them focus on students, keeping them engaged and motivated to achieve better learning outcomes and strive for excellence as graduates. How do I know? To date (at the time of submitting this abstract) about 4000+ tweets have been sent over an 8 week period with 100 a day during the month of July. There have been 21,500 visits to my blog and 34,000 copies of the PDF poster downloaded in two months. With many requests for posters to be printed and distributed through institutions and school districts as well as translated into other languages, claiming the Padagogy Wheel is being thought about by 80,000 teachers around the world is reasonable, don’t you think? I am now being advised that apps want to be built and for the concept to be built into teaching aids.

For the Story So Far http://tinyurl.com/padwheelstory This is a comprehensive number of blog posts and podcasts about the development of the Padagogy Wheel. In this presentation we will visit the features and benefits of the Model and how to get the best use out of it. This presentation will conclude with a request for help from my colleagues of … where to now?
Threshold concepts in a flipped classroom to facilitate learning about health inequalities

Catherine Chittleborough Lecturer in Public Health, School of Population Health, University of Adelaide

THRESHOLD CONCEPTS

In a second-year undergraduate epidemiology course, one threshold concept is that social stratification, in the form of income and wealth inequalities, influences achievement of life goals and health. The learning activities described here are based on previously published ideas (Harlow 2009; Touzard 2009), but utilise a flipped classroom to help transform students’ existing ways of thinking about the relationships between poverty, income inequality and health, moving them beyond preconceived ideas that poor people could be healthier if only they were motivated enough to do so. Threshold concepts are characterized as transformative, irreversible, integrative, and troublesome (Meyer & Land 2005; Cousin 2010). Once students understand that income does affect health, irrespective of personal life goals and motivation, it is theoretically difficult for them to regress back to former ways of knowing. For this to occur, students need to go beyond simply mimicking a concept, to internalising it and transforming the meaning on a deeper level. Understanding the role of income inequality in determining health will enable integration of ideas about other types of inequalities, and potential solutions. Students may find the concept of how income inequalities are related to health troublesome as they oscillate between their existing views and their newly acquired understandings.

LEARNING ACTIVITIES

Students completed a pre-class online survey to ascertain their knowledge and views about income inequality and health, and recorded their life goals (e.g. related to career, health, family, recreation etc.) on the understanding that these would be used during the face-to-face session (Strayer 2012). Responses to these questions form the foundation on which students build their understanding (Novak 2011). This use of a flipped classroom provided useful information to the facilitator on the existing views of students, provided students with an opportunity to engage with the content before class, and allowed more time for interactive activity during class. During the class students engaged via enactment (Yip & Raelin 2012), taking on the income and wealth circumstances of different groups of the population and determining whether their life goals were attainable within the limits of these circumstances. Individual reflection and evaluation was formalised using Minute Papers.

RESULTS

Of the 70 students enrolled, 96% completed the pre-class survey. In this survey 74% of students thought that income inequality was a serious problem, but 79% thought that people have a good chance of getting ahead if they work hard. Of the 60 students that completed a Minute Paper, 78% stated that the most important point they learnt from the class related to one or both of the main learning objectives - the extent of unequal distribution of income in Australia, or how income influences life goals and health. Queries raised by students in the Minute Papers were clarified in the following class.

CONCLUSION

Use of an online pre-class survey was a useful part of a flipped classroom that facilitated students’ understanding of a threshold concept in epidemiology.

REFERENCES

Virtual simulation use in Veterinary and Biological Sciences Education

Lyndlee Easton Associate Lecturer, Molecular Life Sciences, The University of Adelaide
Wendy Hamood Extra Mural Studies Coordinator, School of Animal and Veterinary Sciences, The University of Adelaide

Simulation is defined as an imitation of the operation of real-world processes or systems over time. Higher education has long used simulations for training in areas that are potentially dangerous or experimental, for example flight simulation and architecture. Virtual simulations are increasingly being used to teach science-based subjects in higher education (deJong et al. 2013). In Biological Sciences, virtual simulations are often used as visual models to explain the basis of life processes such as DNA replication, meiosis/mitosis and protein synthesis. The incorporation of virtual simulation into the Veterinary Science curriculum is also now frequently reported and expected to increase (De Bie & Lipman 2012). A recent example is the use of 3D animations to teach the pathophysiology and treatment of cruciate ligament rupture in dogs (Clements et al. 2013).

A review of the research on the learning effects of computer simulations in science education shows robust evidence that computer simulations can enhance traditional instruction (Rutten et al. 2012). Well-designed interactive computer-based instructional programs have benefits over paper-based teaching methods which include reducing ineffective cognitive load while enhancing use of effective cognitive load. This enables students to make more effective use of memory space (Khalil et al. 2010). Virtual simulations are also a suitable alternative to using real animals for dissections when learning anatomy and physiology. Although real life experience is essential for medical and veterinary education, the numbers of animals required for teaching can potentially be minimised by incorporating simulations into teaching as a safer more ethical alternative (Scalese & Issenberg, 2005; Akpan 2001).

Simulations have recently been introduced as laboratory preparation exercises for undergraduate Biological Science students at The University of Adelaide. Simulations focus on tasks that will be undertaken during practical sessions to prime students for the skills and knowledge required. Simulations include the manipulation of interactive microscopes, DNA electrophoresis, and ultimately, dissections. Previous research by Toth et al. (2009) showed a significant difference in understanding for students who viewed virtual simulations of DNA electrophoresis prior to their hands-on laboratory [F (1, 36) = 12.78, p = 0.001]. In the same study, 84% of students thought that simulations done prior to the practical were very helpful. Preliminary results from a survey of 102 undergraduate Biological Sciences students at the University of Adelaide showed that 76% viewed simulations as very to extremely helpful as preparation for laboratory sessions.

As computer-based learning takes on a larger role in education, educators have a major role in managing online materials, incorporating them into the curriculum to ensure that students are able to enjoy the flexibility and benefits computer-based instructional simulation programs offer student learning. Accordingly, evidence-based research needs to be undertaken to monitor and evaluate learning outcomes for students exposed to this mode of instruction. We will discuss the use of computer-based instructional simulation programs to enhance practical experience for Biology and Veterinary Science students including benefits, limitations and factors to consider when choosing to incorporate or evaluate their use in teaching.

REFERENCES

Massive Open Online Courses (MOOCs) are large-scale interactive education courses offered free. Evolving from distance education, they are typically claimed to help create a democratised learning community based around university modules, but without accreditation (Blackall 2012), although this last aspect is changing (Kolawich 2013a, Sandeen 2013).

This presentation situates MOOCs in terms of online learning, competition for students, student opinions on such offerings, connections with conventional courses, and their potential impact on those employed to deliver and assess such courses. Thus, it encompasses aspects of pedagogy as well as concerns about the future of the traditional teaching model. It asks whether the trend to online delivery of MOOCs is a threat or an opportunity for academics and universities. It aims to cultivate discussion about their role, and it questions whether they should be welcomed or resisted.

The emergence and recent surge in MOOCs has prompted widespread debate (Bowen 2013, Clement 2013, Gecan 2013, Johnson 2013, Kolowich 2013b, Leddy 2013, Reich 2013) with a keen eye on the experience of universities that have already embraced MOOCs, since this gives an indication of potential opportunities and obstacles (Deakin Learning Futures 2012, Cowan 2013, Winterford 2013). It is especially instructive to look at a number of overseas universities that have reported on recently offered courses of this kind. These include evaluations by the University of Edinburgh, which prepared and ran six short courses in partnership with the US-based for-profit Coursera organisation (MOOCs@Edinburgh Group, 2013), and two reports by the UK’s Open University (Cross, 2013; McAndrew 2013) on delivering different Open Learning Design Studio (OLDS) MOOCs.

The advantages of MOOCs for students include flexible study hours, and reduced travel. Troublesome aspects include: an appalling attrition rate (Gecan 2013); establishing whose work is actually being assessed and how (Leddy 2013); the prospects of staff cuts (Gecan 2013); and, dealing with the loss of real-time, personal interaction between tutor and student. Of course, some of these elements are already present wherever online submission and assessment are promoted.

MOOCs can be set as prerequisites for other study, in an example of what is called the free-rider principle, with the dependent university hitching a lift via another one’s investment. Issues of intellectual property and eventual fee-based licensing arrangements (Lewin 2013, Sandeen 2013), and of the impact on teaching staff are of vital interest. While a past president of the American Association of University Professors (AAUP) argues strongly for protection of intellectual property (Nelson 2013), the National Tertiary Education Union seems more concerned about access and content problems only if MOOCs are commercialized (Rea 2012). Deakin and La Trobe universities offer assessment for credit, subject to fees (Trounson 2013a, 2013b), and if these options seem antipathetic to the original notion of freely distributed learning materials, should anyone be surprised?

In all, the growth of MOOCs presents a complex issue in a changing educational environment. This presentation aims to prompt discussion about their role and impact, and how their continuing development might be regarded by students, teachers and administrators.

REFERENCES

MOOCs@Edinburgh Group 2013, ‘MOOCs @ Edinburgh 2013: Report #1’ http://hdl.handle.net/1842/6663 [accessed 20th June 2013]

Game-based learning is touted as one of the most innovative and potentially most powerful forms of educational technology. Founded by military organisations seeking training resources in simulations of flight, driving, and squad-based combat, game-based learning is now much more widespread and rarely draws the frowns of disapproval it once did. Ranging from the guardedly optimistic (Gee 2005) to the pragmatic (Whitton 2010) to the wildly evangelical (Prensky 2007), theorists of game-based learning have built a body of knowledge exploring the importance of engagement, assessment, situated cognition, sociality, and the development of professional identities, to name just a few.

However, the dominant model of game-based learning is still remarkably didactic. It relies on a discipline expert (often combined with an instructional designer or programmer) producing a high-quality artefact or resource (in this case a game) for relatively passive consumption by an “empty-vessel” student. Admittedly, playing a video game is much more active than a medieval lecture, but is sometimes depressingly close to reciting times tables on the classroom mat. Our main case study, the Little Big Planet franchise, is an example of how levels created by players with varying levels of expertise have the potential to facilitate learning in ways that are interesting, fun, and engaging, but ultimately limited (Charsky 2010).

What if we focus less on providing games for learning, and more on platforms for creation? For example, Little Big Planet gives all players the tools to build their own levels: this is learning that is less structured, less defined by “curricular” approaches, and less amenable to control by teachers as representatives of institutional power. It facilitates learning through authentic play, which is a way to manage energies and to inspire improvisation both within and beyond rule-governed behaviour (Schechner, 1994, p. 621). This is deeply challenging to traditional notions of learning and the teacher’s role in the reproduction of social relations.

REFERENCES

KEY WORDS: video games, play, Little Big Planet
Can we teach professional skills in the cyber world? Creating e-learning legal skills development tools

Anne Hewitt Senior Lecturer, Adelaide Law School, The University of Adelaide
Matthew Stubbs Senior Lecturer, Adelaide Law School, The University of Adelaide

KEY WORDS: Professional skills, e-learning, law, blended learning

There has been an historical gulf between law schools and the legal profession: law schools provided an academic foundation based on a close reading of substantive law, whereas the legal profession equipped graduates with professional legal skills. These skills range from lawyer-specific clinical skills such as advocacy, negotiation and client interviewing, to more generic skills such as analytical and reflexive thinking, oral and written communication, and the capacity to work independently and ethically. Legal professionals tended to consider professional skills to be ‘ineffable, unteachable and only capable of being picked up by trial and error on live clients’. This academic-vocational divide has broken down, and it is now accepted that knowledge of substantive law must be supported by appropriate skills; as Karl Llewellyn explains, ‘[t]echnique without ideals is a menace; ideals without technique are a mess.’ Further, students must master independent research skills to keep their substantive knowledge relevant and useful in the rapidly changing legal field. Legal skills can be taught and learned in law schools. In fact, the Australian Law Reform Commission in 2000 recommended that ‘university legal education … should involve the development of high level professional skills and a deep appreciation of ethical standards and professional responsibility.’ This imperative is strengthened by the fact that lawyers owe fiduciary duties to their clients. Equipping students with professional skills also improves their future employability. Thus, the teaching of professional legal skills is now regarded as a responsibility of law schools.

Legal educators are therefore faced with the challenge of helping their students to acquire complex cognitive skills. Talking or reading about skills rarely translates into an ability to perform them: it is widely recognised that students can only learn skills by doing them. However, the teaching of skills in a traditional face-to-face classroom is resource intensive, as it often requires ‘small group teaching’ to be effective. This is problematic as the resources available in tertiary education are ‘stretched to breaking point’. Consequently, the delivery of legal skills teaching needs to accommodate resource constraints. Further, legal skills learning needs to be made accessible to a diverse range of students. Moreover, skills teaching must meet student needs for flexibility of timing and approach – by being available whenever needed and being adaptable to differing rates and modes of learning.

This presentation considers how e-learning technologies can be used to develop student skills. It proposes the use of technology to offer more flexible and effective means of delivering skills teaching, which add spatial and temporal dimensions to the traditional classroom-based, face-to-face learning. It will consider an e-learning project undertaken at Adelaide Law School in 2013, in which a series of online modules to develop students’ professional skills are being created which will be embedded across the LLB program. These modules are being created using LAMS (Learning Activity Management System) software, and will address program-wide generic and professional skills. The 11 modules under development address skills of:

1. Academic honesty
2. Legal research using statutes
3. Legal research using cases
4. Case analysis
5. Statutory interpretation
6. Answering legal problems
7. Legal research using secondary sources
8. Legal essay writing
9. Writing letters of advice
10. Legal ethics
11. Legal citation
Each module will incorporate information delivery with activities, so as to facilitate student construction of knowledge and skills development. The modules will also be both embedded into specific courses and made available through a generic MyUni site to allow students to revisit the modules whenever needed, regardless of the courses in which they are enrolled at the time.

While the project has not yet been completed, it is hoped it will ensure appropriate scaffolding of skills learning throughout the LLB degree, assist students to access the skills training they need when they need it, and thereby increase both student engagement and the student experience. An outline of how the modules will be evaluated will be presented, including consideration of the data which can be garnered from within the LAMS system itself.

REFERENCES

9 Kift, above n 4, 57.
10 Australian Law Reform Commission, above n 6, 123-4.
11 Peden and Riley, above n 7, 119.
14 One of the core assumptions of constructivism is that learning is an active context-specific process of constructing knowledge rather than passive acquisition: Jean Piaget, Construction of Reality in the Child (Routledge & Kegan Paul, 1957).
Strengthening the information literacy skills of first year Science & Engineering students for 21st century learning

Heidi Ing Liaison Librarian, Science and Engineering, Library, Learning and Research Service Flinders University
Masha Smallhorn School of Biological Sciences, Faculty of Science and Engineering, Flinders University
Jeanne Young School of Biological Sciences, Faculty of Science and Engineering, Flinders University
Karen Burke da Silva School of Biological Sciences, Faculty of Science and Engineering, Flinders University
Kate Deller-Evans School of Computer Science, Engineering and Mathematics, Faculty of Science and Engineering, Flinders University

KEY WORDS: Information literacy, science and engineering, first year undergraduate students, peer-reviewed literature, written communication

Effective written communication is required for professional life, thus it is a critical skill for first year undergraduate science and engineering students to develop (Moore 1994). To be able to write effectively, students need to access and interpret the scientific literature. These information literacy skills have become increasingly important as ever-developing technology enables access to abundant information resources (van Lacum et al. 2012). Those entering their first year of university need to be able to locate and access information relevant to their studies, and evaluate the accuracy and reliability of this information, particularly peer-reviewed literature.

Flinders University Liaison Librarians have a long history of collaboration with academics from the Faculty of Science & Engineering to provide subject specific information literacy classes. This type of collaboration has been highlighted as beneficial to the teaching and librarian staff as well as the students (Petzold et al. 2010). The existing information literacy program delivered to science and engineering students is based on the embedded librarian model (Grafstein 2002). This model uses a subject specific librarian to deliver targeted information literacy sessions with skills assessment built into the curriculum and follow up sessions delivered at a point of need. Following these sessions, students are required to complete a summative online quiz to assess their developing information literacy skills.

To evaluate and improve the efficacy of our program, pre- and post-intervention surveys were administered to students enrolled in first year biology and engineering topics. Students were offered a survey in their first weeks of university that examined their perceived ability to identify and access high quality scientific information and to recognise peer-reviewed sources. Students were asked a series of questions relating to their confidence levels, their sources of information and their understanding of the terms ‘high quality scientific information’ and ‘peer-reviewed’. The same survey was administrated again in week eight of semester, after students had participated in subject-specific information literacy classes. These surveys aimed to identify the knowledge that students bring to their first year of university in relation to accessing information and to determine how our information literacy programs affect this knowledge. A further aim was to improve our existing programs and maintain their relevancy to student learning in the 21st century.

A preliminary analysis of the pre-intervention data demonstrates that students begin university with an over-confidence in their ability to access information, yet they lack the knowledge of sources required for study at a tertiary level or the ability to identify when information is of a high scientific quality. Our preliminary results show that we are clearly overcoming ‘Googlitis’ by providing information literacy instructions that are in context and discipline specific (Leibiger 2011). While our survey results demonstrate that students are becoming more confident and empowered to seek and access peer-reviewed literature, the results also highlight that the readability of scientific literature is a hurdle for many of our students. This has been highlighted previously by van Lacum et al. (2012). Future directions for our literacy program include addressing the readability hurdle of peer-reviewed literature and using online videos to increase the efficiency of the embedded librarian model at Flinders University.

REFERENCES
Student Learning by Way of Creating Assessment Items

Hubertus PA Jersmann A/Professor, Discipline of Medicine, Faculty of Health Sciences, University of Adelaide

KEY WORDS: MCQ, assessment, medicals

BACKGROUND
Multiple choice question (MCQ) examinations have been used in medical assessment for over 40 years. This form of assessment has some weaknesses, its strengths are reproducibility, application of large numbers of items covering many medical disciplines in a short time and the ability to perform automated marking of exam papers or even administer the examination online. Students often struggle with the MCQ format, typically by missing what the key point of question is or by "over-thinking", meaning looking for complicated twists and traps, which are not actually there.

METHODS
A verbal introduction as to why we have MCQ questions, why they are structured the way they are and how to approach them was provided. Then the students were given a one page written introduction summarising how to write ‘good’ MCQs. During a clinical placement (9 weeks in Internal Medicine) the students have to create one 5 answer MCQ and submit it electronically. They also have to provide a written discussion of the correct answer and why the four distractors are incorrect.

RESULTS
Over 3 years all 240 students submitted at least one question. Only 65% of students seemed to have followed the instructions provided. A very small number of MCQs were plagiarised from books or internet. About 25% of MCQs were of sufficient standard to be used in examinations within the MBBS program, which is less than predicted by an earlier study.1 In their one-to-one exit interviews at completion of their rotation most students acknowledged that creating a MCQ was harder than they had thought. However, they reported that they gained valuable insight into this form of examination by creating a question themselves. They felt it was especially difficult to produce a fourth plausible incorrect distractor. The students felt empowered by the possibility that the MCQ, which they wrote might be used in their final examination.

DISCUSSION
A previous study found some reluctance in students to create MCQs as a way of learning.1 In contrast, our students perceived the exercise of creating a MCQ educational and useful. In addition, the MBBS program gained about 60 quality questions for their Bank of MCQ from this exercise. Unfortunately we were not able to assess the influence of this exercise on student exam performance by objective means, because the MCQ exams at the end of years 3 and 4 are profoundly different and also because the questions used have changed significantly over the time, during which we carried out this exercise. These factors and the students improvement in knowledge and assessment technique over 12 months introduce too many variables to allow robust statistical analysis. Based on the students observation regarding problems with four distractors, which matches anecdotal complaints by MCQ writing senior academics it may be worthwhile exploring the possibility of using 4 option questions in the future instead of our current 5 option MCQ.

REFERENCES
Anatomy teaching with new technologies: what worked and what didn’t.

Ian Johnson Senior Lecturer, Discipline of Anatomy and Pathology, The University of Adelaide
Edward Palmer Senior Lecturer, Discipline of Higher Education, The University of Adelaide

KEY WORDS: Anatomy, teaching, new technologies

New technologies in learning and teaching are often assumed to be more efficient, an improvement on older methods and sometimes to represent an advance in pedagogy (1-3). What is seldom emphasised is that this may or may not be true depending on the educational context in which these new technologies are used. Here we report on our experiences with a variety of electronic aids to learning and teaching in anatomy to undergraduates and graduates. Observations were made of undergraduate, medical, nursing and health science students studying as part of their degree courses at the University of Adelaide, and of postgraduate surgical and radiology trainees attending an external course designed to help them pass the anatomy component of the examination for fellowship of the Royal College of Surgeons/Radiologists.

An interventional cohort comparison of 159 medical students in year 3 of the undergraduate course revealed that the provision of interactive scenario-based online resources and interactive formative small group quizzes using electronic voting systems made little difference to the students’ views on eLearning and no difference to their learning outcomes. The students were, however, very pleased that staff had gone to such lengths to make their learning more enjoyable. As a stimulus to learning, voting systems worked best when interspersed with the main learning activity and when used by several small groups of students rather than individuals. Most interactivity amongst undergraduates was stimulated by posing ambiguous questions for answer by voting systems. For time-short postgraduates who were essentially revising their anatomy, using voting systems for worked examples of exam questions were preferred. A comparison of free responses from undergraduates where voting systems were used regularly and those where they were not revealed that this technology can be overused.

Recording undergraduate lectures correlated with reduced lecture attendance. Placing narrated recordings online and replacing some live lectures with large-group interactive sessions (aka lectorials, flipped classrooms, Q&A sessions etc.) correlated with improved attendance. In contrast, placing learning materials, including lecture recordings, online did not affect postgraduate attendance.

New technologies in learning and teaching are deployed for many reasons. These range from a desire to improve learning(4), to an uncritical response to pressure to use them (2, 3) or a compulsion to use anything new(5). In this study, we were driven simply by a desire to improve learning, yet our experience with new technology was still quite variable. We suggest that this is because the effectiveness of new learning and teaching technologies depends largely on the educational contexts in which they are used. Given the current drive to embrace new technology in education, we propose that this is an important consideration that is in danger of being overlooked. And before we dismiss the obvious, we might heed an eloquent warning in popular fiction: *The cry ‘I could have thought of that’ is a very popular and misleading one, for the fact is that they didn’t, and a very significant and revealing fact it is too’*.(6)

REFERENCES

NOTES:
Repositioning Educational ICTs: The new and challenging as mechanisms for aligning learning encounters and assessment

Jessie Jovanovic
Lecturer in Early Childhood, School of Education, Flinders University

Christian Ohly
Online Educational Designer, Centre for Regional Engagement, University of South Australia

Don Houston
Senior Lecturer in Higher Education, Centre for University Teaching, Flinders University

KEY WORDS: Learning spaces, Relationship-based learning, Teacher education

Higher education in the 21st century has seen prolific growth in the range, capabilities and accessibility of information and communication technologies (ICTs). When used as educational resources and virtual learning spaces, we argue that ICT tools and infrastructure can augment rather than problematize effective teaching practice.

In this paper we present findings from a recent action research study that explores how educational ICTs can act as an enabling mechanism for the integration and alignment of learning encounters, content and assessment within the learning experience of students. The study builds upon the work of Manning-Morton (2006) who reasons that we need to offer more to our students than the reproduction of current knowledge and practices. While the project was undertaken in the context of early childhood education, we argue that developing self-knowledge and the ability to connect the personal into the professional should be a characteristic of higher education more generally and should be an integral element of the design of any learning systems. We need graduates who can apply their personal awareness to their theoretical knowledge as they traverse the changing terrain of their chosen profession.

We employed an emancipatory action research approach to complete several rounds of strategic planning, implementation, observation, evaluation and critical reflection during the annual running of a new literacy and numeracy subject (McNiff 2002, Zuber-Skerritt 1996). First offered in 2011, collaboration between the researchers sought to better mirror educational philosophies that are ‘process as well as content focused, a model of relationship-based learning’ (Manning-Morton, 2006) in a deliberate move away from more traditional approaches to teaching in higher education. The institutional space (Moodle) was used in combination with the personal-learning space (PebblePad) to provide subject content and expectations in the former, in combination with tools that stimulated reflection and encouraged self-directed learning in the latter.

The integration and balancing of the curriculum domain of ‘self’ with the knowledge domain (Barnett, Parry & Coate, 2001) was a key aim of the project. Analyses of student work-samples and qualitative feedback from student evaluations of teaching (SET) reveal the depth of personal growth and professional insights students gained from this relationship-based learning approach that was made possible with the use of educational ICTs. The philosophy and mechanics behind this use of educational ICTs will be of interest to those grappling with the complexities of contemporary teaching in higher education. Important implications are considered for their careful design and enactment to best support student learning and engagement.

REFERENCES

Online Teacher Education in Professional Experiences Courses: Challenges and Dilemmas

Benjamin Kehrwald School of Education, UniSA
Bill Lucas School of Education, UniSA
Elspeth McInnes School of Education, UniSA
Judy Peters School of Education, UniSA

KEY WORDS: teacher education, online learning, blended learning, academic development

In the shift from bricks to bytes, one of the most difficult challenges is the facilitation and support of embodied learning (see Bayne, 2004 and Land, 2004), which is premised on interactions between the learner and the physical environment. It involves the creation, manipulation and sharing of meaning through engaged interaction with artefacts. At its core, embodied learning is a physical ‘doing’ rather than merely ‘knowing’. It targets the motivations of learners to engage in authentic tasks—to “practice” at something. Embodied learning is at the heart of performance-based professional learning, including teaching (Larreamendy-Joerns and Leinhardt, 2006).

In 2013, the School of Education (EDS) at the University of South Australia (UniSA) began offering its undergraduate preservice teacher education program online. As part of this move from place-based to online teaching, teacher educators in EDS were confronted with the challenge of supporting embodied learning within Professional Experience courses via blended and online delivery. The intended outcomes of the Professional Experience courses are ultimately linked to a set of graduating teacher standards which define the competencies required for teachers to move from the ‘preservice’ category to status as practicing, ‘in service’ teachers in schools and other contexts (for example, Australian Institute for Teaching and School Leadership, 2011). These standards highlight a range of embodied professional practice, e.g., classroom interactions and the cultivation of relationships with students, or management of classrooms and other learning environments such as preschool.

Thus, all Professional Experience courses include embodied learning in education settings in which pre-service educators are exposed to the realities of planning, delivering and managing teaching of a curriculum. The challenge for academics teaching in Professional Experience courses was how to support this embodied learning at a distance.

This presentation focuses on the challenges and dilemmas of shifting a Professional Experience course from on campus delivery to a blended and online delivery. The focus is enacting a policy change toward online delivery and the way that policy is being enacted in the School of Education (following Ball, Maguire and Braun, 2012). The presentation highlights two broad challenges: (1) staff dispositions toward online learning and their concerns about online delivery, and (2) the tensions between the content of the program, with a focus on early childhood and school teaching as a predominantly place-based profession and the practice of delivering the program online. The presentation unpacks these two challenges in the case of Professional Experience I, the first course in the professional experience strand of the four year undergraduate program.

In particular, the presentation highlights these key questions:

- **Can this be done?** Staff views of the possibility of teaching professional experience online
- **Should this be done?** An interrogation of the rationales which underpin decision making in the shift from bricks to bytes
- **How was this done?** An examination of the unfolding practice of shifting the course online
- **Where to from here?** A reflection on experiences of the journey so far with attention to both a) what progress has been made and b) what lies ahead.

REFERENCES

NOTES:
Effective use of online learning resources in the experiential learning of engineering drawing

Colin Kestell The University of Adelaide
Dorothy Missingham The University of Adelaide

KEY WORDS: Blended learning, Experiential learning, Heuristic

The development of student engineering drawing competencies has traditionally been an experiential learning process, in which students develop technical skills through persistent hands-on practice with pencil, paper and technical drawing tools; while simultaneously developing their knowledge of the strict standards and procedures that accompany this pedantic doctrine of graphical communication. To achieve these results, enrolled engineering students would typically attend a weekly one-hour lecture in which the curriculum was didactically covered (see for example Oraifige et al., 2011). After this, these same students might be divided up into a number of smaller groups that were spread between repeat tutorials offered throughout the week to accommodate them all. In these smaller group sessions, the students would work on demanding drawing assignments, each of which were designed to develop their manual drawing and dexterity skills first-hand, while also encouraging them to reflect upon their knowledge of drawing standards and universally accepted procedures. To assist in this teaching learning approach, tutors would circulate amongst the class and provide support on a one-to-one basis, by critiquing the students’ work and providing suggestions at their side. More recently, the rapid development of technology means that engineering students now also have to heuristically develop additional proficiencies in the use of continually evolving computer software, in order to model products in a virtual environment and then to produce drawings through computer-aided engineering and drafting (ibid, Cao et al., 2011). Whether they are using pencil and paper, or a mouse and a keyboard, the inherent visual and kinaesthetic processes remain the core components in this learning mechanism.

These same information technology developments however, have also revolutionised the way in which the contemporary generation communicate and absorb information, i.e. online. Consequently, the use of this same technology to teach is becoming far less of a novelty and more of a necessity (see for example Šedivy, 2012). However, are the learning outcomes from the traditional visual and kinaesthetic processes being affected by modern blended learning practices, in which online resources are being increasingly introduced to the mix? The hypothesis of this paper is that they are, but positively so. It will be demonstrated that through a critique of existing research, combined with a study of student perceptions, that there are convincing indications that many digitised online resources do add significant pedagogical value towards enhancing learning outcomes (see for example Li et al. 2011, Pando Cerra et al., 2009) when strategically utilised in addition to face-to-face (or ‘at elbow’) methods in a blended learning environment.

REFERENCES
Pando Cerra, P., Alvarez Perin, P., Perez Morales, M. and Higuera Garrido, A. “Research regarding the implementation of an interactive application for educational improvement of engineering drawing.” Computer Applications in Engineering Education. Vol.19, no.1..
Not Reinventing the Wheel: Two band-aid solutions to address feedback in French language courses (plus one happy, unintended consequence)

Ben McCann Senior Lecturer in French Studies, Associate Dean (Student Experience & International), University of Adelaide

My French language students often make the same mistakes. As new knowledge is learned, and layered on top of old knowledge, the two are often mixed up or forgotten. To address this, I have incorporated two small-scale feedback mechanisms into my French language teaching that have improved student performance, increased student satisfaction, and stopped me pulling my hair out.

The first is Actionable Feedback. Two of Nicol and Macfarlane-Dick’s seven principles of good feedback practice remind us that feedback “clarifies what good performance is (goals, criteria, expected standards)” and “provides opportunities to close the gap between current and desired performance” (2006, p. 119). To this end, since semester 1 2013, I’ve deployed an actionable feedback approach that encourages students to actively address the mistakes they are making. Hardcopy mistakes are highlighted in yellow and accompanied by a green letter – S (syntax), P (punctuation), G (grammar), V (vocabulary) or O (‘orthographe’, or spelling). The students then have the work returned and I offer them a carrot: if they address each of the mistakes signified by the letter, hand back a second copy with a brief description of the error they have made alongside the new, correct answer, within 72 hours, they will receive an extra 10%. This feedback mechanism allows the student to respond proactively to errors made, and improve their self-directed learning skills.

The Second is the Lecture Mini-Test. The regular administration of short, ‘low-stress’ quizzes that can test current grammar and vocabulary terms are extremely useful in consolidating what has been taught. Brown conceives of such quizzes as the “information that washes back to students in the form of useful diagnoses of strengths and weaknesses” (2004, p. 29). Frequent quizzes have also been shown to help students retain material for longer periods of time and make them more prepared for high-stakes exams (Geiger & Bostow, 1976; Johnson & Kiviniemi 2009). Since semester 1 2012, I’ve added the Lecture Mini-Test in my French grammar plenaries. At the start of each lecture, for five minutes only, I present the ‘5 in 5’: five short diagnostic questions that assess if students have understood the previous week’s vocabulary and grammar points. The students have three minutes to answer them, and then they get two minutes of intensive feedback from me before we start the lecture proper. These Mini-Tests may only be worth 5% of their final overall semester grade, but they do two things: (1) encourage students to attend the lecture, and (2) regularly review and review previous work. Students mark each other’s tests there and then. I provide the answers, complete with links on the grammar slide that take the student immediately to the correct grammar information, and more detailed feedback. Fundamental concepts are embedded, and there is an ongoing feedback loop that keeps me updated on the students’ level of understanding. One final serendipitous outcome of the Mini-Test has been to substantially reduce once crippling attrition rates in the first-year French grammar lecture. Band-aids, it would seem, might work not just as a quick-fix answer to a problem, but as a long-term approach to tackling feedback and retention.

REFERENCES

The flipped classroom is a pedagogical model in which traditional lecture is reversed with students engaging in interactive content prior to class (Baker, 2000; Lage & Platt, 2000). This allows students to work through pre-lecture content at their own pace with in-class time spent on collaborative activities helping to clarify concepts and contextualizing knowledge through application. Flipped classrooms is a burgeoning area of interest and will transform our teaching practices whereby students will take greater ownership of their learning and better prepares them to engage in active and experiential learning exercises within and beyond the class.

The BHltSc is a broad, multidisciplinary program designed to provide students with foundational learning in the human health sciences with student enrolment steadily increasing to over 400 in 2013. Teaching Public Health 1A (PH1A) to a large first year student cohort in a compulsory course within this generalist program has many challenges for learning and teaching. These students enter university with diverse levels of motivation, disparate abilities, course expectations and career aspirations, as well as general learning needs. Thus, it is extremely important from the very beginning to enhance and promote a positive experience through engaging students in a range of fun and student-centric learning activities.

In 2013, a university eLearning Development Grant was awarded to several academic staff* in the Faculty of Health Sciences with the goal of implementing and evaluating interactive, student centric e-learning activities to integrate “flipped classrooms” in the first year. PH1A is part of this pilot study and in semester 1, two on-line interactive self-directed modules on infectious diseases designed in Articulate Storyline and embedded in MyUni were developed in preparation for the face-to-face lecture to be flipped.

Unsolicited comments from this year’s SELTs indicate both negative and positive aspects of flipping the classroom in a large student cohort. Some of the comments included:

Positive aspects about flipped classrooms in PH1A:
- The interactive modules and lectures enhanced my learning by providing something more than the “sit and write” lecture method of other courses.
- The flipped classroom approach was interesting and should be trialled over a couple of weeks to really determine how well students learn in this condition.
- I enjoyed the flipped classroom activities towards the end of the semester. I believe these should be encouraged earlier on in the course.

Negative comments about flipped classrooms in PH1A:
- The FLIP classes were not very beneficial. It was like listening to a lecture at home with many interruptions/technical stalling. It would have been more successful just attending the lecture at Uni.
- I don’t think the flipped classroom worked well at all for Public Health. Sticking to traditional learning styles would be better.
- Not flipping! Some parts of the online lecture didn’t load for me, and I ended up missing the information.

This presentation will describe the logistics to implementing flipped classroom in a large class and will highlight the positive aspects as well as the challenges of development, implementation and evaluation.

REFERENCES

Acknowledgments
* Team members of the eLearning Developing Grant: Sophie Karanikolas, Cathy Snelling, Mario Ricci, Eleanor Peirce, Rachel Gibson, Cathy Chittleborough, Tracey Winning, Ray Peterson and John Willison.
NOTES:
Fostering student interest and promoting deep learning in a laboratory context: A case study in gas laws in first-year chemistry

Matthew Norris School of Chemical and Physical Sciences, Flinders University
Michael Crisp School of Chemical and Physical Sciences, Flinders University; Research and Innovation Services, University of South Australia
Justin Read School of Chemistry and Physics, The University of Adelaide; School of Chemistry, The University of Sydney
Ingo Köper School of Chemical and Physical Sciences, Flinders University

Students’ experiences of laboratory activities have great potential for fostering interest in and improving attitudes towards science (Osborne et al., 2003), yet there remain significant questions around evidence demonstrating this potential being realised (Hofstein and Lunetta, 2004). Recently it has been demonstrated that the development of student interest occurs through four distinct phases (Hidi and Renninger, 2006) and educator expectations are sometimes misaligned with the lived experiences of students (Crisp et al., 2011). Factors known to influence situational interest include novelty, colour changes, bangs and flashes, the use of materials from students’ everyday experiences and exotic materials such as liquid nitrogen (Bergin, 1999). Successful use of these triggers has been demonstrated (Read and Kable, 2007). However, even though triggering and subsequently maintaining situational interest appears conceptually simple, achieving this in practice is not always successful.

This presentation will explore two activities used in a first-year university chemistry laboratory, which offer insights into promoting student interest in practice. Tools developed by the Advancing Science by Enhancing Learning in the Laboratory (ASELL, formerly ACELL) project (Buntine et al., 2007) were used to examine both experiments. The presentation will explore how students’ responses, evidenced by the data collected, led to the decision to replace rather than to attempt to renovate the existing exercise. Strengths of the existing design were maintained whilst weaknesses were addressed. This evidence-based laboratory redevelopment has led to significant improvements in every area of the student experience and has resulted in an activity comparable with the most positively evaluated student experience examined using ASELL tools to date.

The two experiments both examine the physical properties of gases and both utilise everyday materials, yet we could measure clear differences in the students’ experience. For both activities, the evidence shows that situational interest was triggered and yet success in maintaining it and using the resulting engagement to foster improved understanding was markedly different. The first experiment ‘Popcorn and Football’ was rated as very valuable or better by 13.5% of students, whereas the second experiment ‘Hydrogen: An Ideal Gas?’ received this rating from 94.4%. Furthermore, 44.8% of students indicated that ‘Football and Popcorn’ increased their understanding of chemistry and this response was raised to 88.9% for ‘Hydrogen: An Ideal Gas?’ The reasons for these differences are instructive for design of other laboratory activities.

Developing links between symbolic and mathematical representations and the molecular and macroscopic levels of chemistry is critical for deep understanding of chemistry (Kozma et al., 2000; Treagust et al., 2003; Wu, 2003) and the new experiment is demonstrably effective in making the ideal gas law more concrete for students. The exercise builds to applying their understanding to the challenge of identifying an unknown substance, tangibly demonstrating the utility of their work. These developments are part of a continuing effort to shift from the follow-the-recipe ‘bricks and mortar’ approach of the past to one that is more heavily focused on student interest. Implications for best practice will be considered.

REFERENCES

Treagust D. F., Chittleborough G. and Marniata T. L., (2003), The role of

NOTES:
Teaching Climate Change Adaptation face to face offers many opportunities for interactivity and formative discussions that in turn enable students to experience the power of discovery and the pleasure of deep learning. Teaching this subject in an online environment presents further opportunities for learning (Chinyio and Morton, 2006, Lynch et al. 2008), and is certainly an apposite way of delivering climate change knowledge, but has its own challenges (Alexander & McKenzie 1998). In this paper, we chart the 4 year history of the development and then implementation of a 100% online Graduate Certificate in Climate Change Adaptation, and compare it to its original delivery as a face to face option.

Specifically, we present the results of an evaluation of the inaugural delivery of this course and analyse whether the move from ‘bricks to bytes’ in this case retains or even enhances the deep learning and critical reflection of students. We use student feedback, peer evaluation of the curricula and self assessment of levels of interaction achieved between students, staff and content as sources of information for the analysis.

In concluding we reflect on the challenges of e-learning in practice (Kirkwood and Price 2005), and what lessons might be drawn from this experience for consideration across different e-learning initiatives (Westbrook 2006). We show that students are receptive to online learning yet still want more face to face interaction. We find that curriculum development and its delivery needs to be supported across the institution and thus is reliant on other staff and personnel.

Finally, we find that we are teaching to professionals rather than graduates, and this in itself begets a new approach in delivering climate change curricula. Overall, we need to build further integration between curricula, students, staff and the mobile technologies. This is important not just from a pedagogical perspective so we can learn how to adapt the course to meet student needs, but important in ensuring graduates enter the workforce with the knowledge and skills they need to tackle one of the world’s greatest problems.

REFERENCES

Learning through virtual class rooms - an insight of use of Augmented Reality in online learning.

Niraj Pandya Sessional Facilitator, UniSA; Course coordinator, Australian Adelaide International College

KEY WORDS: Online learning, Virtual class rooms, augmented reality,

To acquire skills and knowledge, Individuals learn in a numerous way such as classroom lectures, textbooks, computers and other electronic applications. Recent trends in education accommodate the individual learner’s needs in terms of flexibility by offering online and virtual class rooms. (Lee, 2012). Augmented Reality (AR) can provide a completely new dimension to student learning by providing additional computer generated sensory input. AR allows a bridge between virtual and real worlds by providing and creating an environment that is enriched and perhaps more interesting than the real physical world (Bronack, 2011; Klopfer & Squire, 2008).

AR can be created and implemented by varied technologies, such as desktop computers, handheld devices and head-mounted displays (Broll et al., 2008; Johnson et al., 2010b; Liu, 2009). A variety of instructional and learning approaches have been taken in the design of AR learning environments, including game-based learning (Rosenbaum, Klopfer, & Perry, 2007; Squire & Jan, 2007; Squire & Klopfer, 2007), place-based learning (Klopfer, 2008; Mathews, 2010), participatory simulations (Klopfer & Sheldon, 2010; Rosenbaum et al., 2007; Squire & Klopfer, 2007), problem-based learning (Liu, Tan, & Chu, 2009; Squire & Klopfer, 2007, p. 375), role playing (Rosenbaum et al., 2007), studio-based pedagogy (Mathews, 2010), and jigsaw method (Dunleavy et al., 2009).

AR allows for the coexistence of virtual and real environments and permits the facilitator and learner to visualise, relate and experience complex relationships and concepts (Arvanitis et al., 2007). AR has been used in many disciplines in higher education such as engineering, architecture and health science with the potential to expand into many other areas. This paper will evaluate the current and possible use and the benefits and limitations of Augmented Reality in higher education settings and will consider not only the technology but also the instructional approach adopted by the AR user and the alignment with technology and the student learning experience.

REFERENCES

Developing curriculum in a new educational world

Steve Parker Associate Dean Teaching and Learning, School of Nursing and Midwifery, Flinders University
David Gillham School of Nursing and Midwifery, Flinders University

KEY WORDS: Curriculum development, blended learning, eLearning

Nursing education in Australia is in constant change. The introduction of a national board and national registration of nurses in 2009 radically changed the context of nursing education in Australia. The Australian Nursing and Midwifery Accreditation Council became the national accrediting body in Australia for all higher education courses leading to nurse registration. In 2010 the Flinders University School of Nursing & Midwifery decided to develop a new Bachelor of Nursing curriculum that took into account contemporary understandings of educational practice such as blended learning; inclusion of national health priorities (AIHW 2011); ANMC competencies for registered nurses; University graduate qualities; and the demands of a complex health care context in which nurses need to practice comprehensively.

ABSTRACT
This paper will describe and explore the development of Flinders University’s Bachelor of Nursing curriculum which was planned over 3 years and implemented in 2013. It will describe the process of inductive curriculum development, identify some of the challenges faced in designing a contemporary curriculum, and the strategies used to ensure that the course responded to the changing face of higher education whilst maintaining the requirements of a practice discipline. The curriculum embraces blended learning and the way in which this curriculum implements this approach will be explored including the use of eLearning strategies and resources. Central to the curriculum is the use of unfolding cases that simulate the clinical setting (Page et al. 2010), presenting students with rich contextual information reflecting multiple disciplinary perspectives Yousey (2012). Contemporary education literature is discussed in relation to changing technology, student diversity and specific disciplinary requirements. Some suggestions will be provided for others who are in the process of developing an accredited nursing bachelor program.

REFERENCES
The use of animations and the ‘teach-back’ technique to facilitate an understanding of health literacy levels within the general community

Karma L. Pearce School of Pharmacy and Medical Sciences, University of South Australia, Adelaide
David Birbeck Health Sciences, University of South Australia, Adelaide
Esther May Health Sciences, University of South Australia, Adelaide

KEY WORDS: health literacy, slowmation animation teach-back technique, tertiary students

Given than less half of all adults have adequate health literacy skills (1), it is imperative that new health professionals understand this and learn how to effectively communicate health messages to individuals with low health literacy.

This paper describes a scaffolded activity to promote an understanding of healthy literacy and uses the development of an animation and the ‘teach-back’ technique to enhance communication and understanding. Both qualitative and quantitative data were used to assess the learning. The students’ individual reflections were also graded based on the Structure of the Observed Learning Outcome (SOLO) taxonomy (2).

One hundred and three students enrolled in a 4th year Nutrition and Therapeutics course completed the ‘health literacy’ activity. Over 90% of the students demonstrated relational or extended abstract reasoning suggesting deep learning had occurred; the mean score for the reflections were 4±1 using a SOLO ‘scale’ which varied ranging from a score of one assigned for prestructural reasoning and a score of 5 for extended abstract learning. These grades correlated significantly for the cumulative grade for the 4 part assessment of 75%±12% (p<0.000). Males performed more poorly than females for their individual reflections (4±01 vs 5±1; p=0.02), with a trend to a difference in overall scores (73±12% vs. 78±8%; p=0.06). These high levels of deep learning were supported with descriptions of how their learning impacted on their personal and future professional lives. The use of animations and the ‘teach-back’ technique allowed students to evaluate and then reflect how effectively they communicated their health messages.

REFERENCES
Where have all our students gone? Promoting positive student outcomes in the digital age through peer driven student communities – A case study of The Unicoach

Sarah Randall-Smith Cofounder and PhD Leader at The Unicoach
Saib Dianati Cofounder and Head of Research and Innovation at The Unicoach
Anita Nedosyko Director at The Unicoach
John Devlin Cofounder and Head of Product Development at The Unicoach
Karen Burke Da Silva Associate Dean, Faculty of Science and Engineering, Flinders University

Over the last few years demands on universities globally have been escalating, in particular the rising cost of education, flexibility and mobility of learning, consumer (student) satisfaction and experience, and the economic pressures for new models of education (Dawson, Heathcote & Poole 2010). Additional pressures have been placed on universities as a result of poor retention rates, with research indicating that every year, approximately 25% of students withdraw from university before the end of their first semester (Hayden, 2010). In explaining student attrition, Tinto’s (1993) interactionalist theory proposes that premature student departure from university is often provoked by feelings of isolation and subsequent inability of the student to integrate with their new social and academic environment. This is supported by local findings across all three South Australian universities, which found that if students make just one friend at university, they are more likely to continue their studies (Brinkworth et al., 2012).

In line with the Bradley report, South Australian universities have set ambitious student targets as outlined in their strategic plans that will see an increase in student enrolments, successful student completion and student employment following graduation (Adelaide University, 2012; Flinders University, 2012; University of South Australia, 2012). In a bid to achieve these objectives and thus remain competitive, many universities are transforming traditional face-to-face instruction and embracing the use of information technology inclusive of online learning. However, while this shift in education is encouraging wider student participation, current research has reported lower satisfaction, engagement and retention among online students (Rovai & Jordan, 2004). In response to these issues many universities are facing in the digital age, the value of learning communities is receiving growing recognition (Tinto, 2003; Zhao & Kuh, 2004). Based on the constructivist approach to knowledge, learning communities work by allowing students to actively engage in educationally relevant activities with students that share similar goals, values and ideas. This unique exchange between students has been associated with higher grades, academic effort and social development, which is why many experts are calling for wider implementation of learning communities in higher education. "All students should have the chance to benefit from structured efforts that create conditions for connected learning and promote integration of their academic and social experiences" (Zhao & Kuh, 2004, pp.131).

The Unicoach is one such learning community that offers a holistic approach to academic learning and social integration through both online and offline components. A student-driven initiative, The Unicoach system allows students to connect with each other through Paid Peer Assisted Study Sessions (PPASS). Additionally, The Unicoach system provides students with accelerated learning techniques through productivity training that they can utilise not only at university, but also later on in life. The current study draws on the results from both qualitative and quantitative research that has analysed feedback from students and university academics in response to our program since our South Australian launch in March 2013. The results from this study will hopefully invoke discussions regarding the need for universities to collaborate with businesses such as The Unicoach to ensure students in such a technologically driven environment are given access to these learning communities that are now driving the achievement of positive student outcomes.

REFERENCES
NOTES:
Virtual Classrooms: web-based synchronous classroom systems & their potential learning/teaching uses in higher education

Pramila Rathore OUA Online Adviser, University of South Australia
Joy McEntee Lecturer, The University of Adelaide

KEY WORDS: Synchronous, Online, Flexible Learning, Blackboard Collaborate, Adobe Connect

Online learning enables flexible delivery of course materials, allowing users to overcome geographic barriers and engage in educational interactions. Asynchronous platforms are the most widely used, and best understood, but the interactions asynchronous learning environments encourage are heavily task-oriented, so the social dimension of the learning experience goes underdeveloped. (Hrastinski 2008, Santoveña-Casal 2012). Rovai and Whiting assert that synchronous VCSs enable students to develop a sense of social belonging, of community and agency that can encourage them to persist in their courses (Hrastinski 2008, Rovai and Wighting 2005).

Web-based conferencing systems including Blackboard Collaborate and Adobe Connect have been marketed to higher education institutions as platforms that can support synchronous virtual classrooms. These Virtual Classroom Systems (VCSs) represent opportunities to create rich, flexible, novel learning environments that enable a high level teacher-student and student-student interactivity. The fact that that interactivity occurs in multiple formats supports multiple learning styles (Pullen, 2012).

With a wealth of digital tools available, synchronous virtual classrooms are potentially attractive to teaching staff. As they are marketed as offering bulk- and flexible-learning opportunities, they are also attractive to University administrators. However, there has been relatively little research on teaching with VCSs, with the result that there is a danger that instructors may rush to “excessive and irrational use of synchronous technology” (Santoveña-Casal 2012). As VCSs are being adopted sector-wide, it is imperative to think through strategies for deploying them appropriately. Accordingly, this is a technology that is ripe for investigation. This paper outlines some of the potential strengths of VCSs, and also explores pedagogical and practical implications of their use, and flags caveats for instructors considering adopting them.

Koehler and Mishra’s 2009 discussion of factors that support a successful integration of technology into education indicates that it is crucial that instructors have a balanced set of competencies: a sound understanding of the technology, and of pedagogy, as well as discipline-specific content knowledge. Where that balance is not achieved the implementation of VCs sometimes has counter-productive results. Potential problems include unrealistic reliance on representations that VCs can be used effectively for bulk teaching, as well as on claims that the technology is necessarily “inclusive.” There is evidence that taken-for-granted or traditional assessment techniques will not necessarily test the skills students learn in VCs, and that students who are encouraged to learn in VCs may be disadvantaged in assessment if this is not carefully thought through. Finally, and most importantly, the fact that learning and managing the interface itself can prove time-consuming and distracting for both learners and instructors needs to be considered before they are introduced to any particular course.

REFERENCES

Online, face-to-face or both? The tricky task of engaging first year students!

Students in Higher Education today are living in a world that is increasingly connected online. Universities provide students with a variety of online services ranging from email through to the delivery of course-specific learning materials. It is an expectation that students will spend a significant amount of their study time engaging in the online environment, utilising the tools and resources that have been provided. However, for many new students, this shift towards the online space for a large portion of communication and teaching can be a difficult transition. They may experience a variety of barriers along the way; such as a lack of skill in the use of these technologies, especially if their school or work environment did not previously place such high emphasis on these skills (Muilenburg & Berge 2005). Currently there is little evidence to show how much time first year students are spending online, the quality of that time, and how this compares to more traditional face-to-face learning experiences.

As part of a larger project exploring first year student success at the University of South Australia, 120 first year students from a range of disciplines had their use of time assessed using the Multimedia Activity Recall for Children and Adults (MARCA); a computerised 24 h use of time recall (Gomersall et al. 2011). The MARCA provides a valid, reliable, high-resolution snapshot of how people use their time. Participants were ‘walked through’ their day from midnight to midnight, recalling each activity chronologically for the 48 hours preceding the day of data collection. They could choose from 600 different activities in time slices as fine as 5 minutes. Additionally, whenever students reported undertaking an activity related to their studies (i.e. attending class, computer/internet use) they were asked to rate how ‘focussed/engaged’ they were during this activity on a 0-10 scale; 0 = ‘totally distracted - I was easily distracted by other things’ and 10 = ‘totally focussed - I was working only on this task, nothing could distract me’.

This presentation will explore the amount of time and focus that these first year students gave to the online environment during their first semester at university, in addition to the offline learning activities they were involved in. It will also describe the various other non-academic activities commencing students participated in that may influence the success of their transition into the university environment. On average, students were only spending 1.5 h/day on the computer, and not all of this time was spent on university related tasks. Of the various university-related activities students were participating in, computer/online use was reported as having the fourth highest average focus score (7.1/10). Students reported higher focus during practical classes (8.9), lectures/tutorials (7.9) and self-directed offline study (7.5).

Given that the first year transition into the physical and social university space has been recognised as crucial to students’ ongoing success at university (Tinto 1997), should we not also be assisting first year students to transition into this new online space as well?

REFERENCES
The accessibility of online material and information has led to the emergence of eLearning tools and methodologies in universities worldwide (Salmon, 2002). Students now expect online activities such as discussion boards or pre- or post-lecture modules not involving face-to-face contact with lecturers. The integration of technology into teaching is causing a shift from traditional lectures to “flipped classrooms,” where students complete online activities prior to attending the scheduled class (Demetry, 2010). The “flipped classroom” allows face-to-face time with lecturers to be used more imaginatively to enhance learning outcomes. The aim of this investigation was to review how the eLearning tool, Learning Activity Management System (LAMS), was implemented in courses in the School of Agriculture, Food and Wine (AFW) and determine the suitability of this tool as a way of enhancing student learning and engagement.

LAMS enables lecturers to design, manage and deliver online learning activities for individual tasks, small group work or whole class activities (Dalziel, 2003). Within AFW, LAMS has been used to develop pre-laboratory exercises to prepare students for practical classes in the topics Animal and Plant Biochemistry II (APBII), Microbiology and Invertebrate Biology II (MIBII) and Biology I. LAMS activities have also been used in Genes and Inheritance II (GIII) and Biotechnology in the Food and Wine Industry (BFW) to:

- Assess understanding prior to lectures by tailoring the delivery of content
- Prepare students for practical classes; providing example calculations with formulae and videos on key techniques
- Revise concepts during or post-lecture to provide formative assessment

After the completion of LAMS activities in APBII, anonymous in-class surveys were used to poll the students about the activities. The responses indicated that students felt better prepared and more confident about the material covered in the pre-practical lessons. In GIII, students preferred LAMS activities as a revision tool with in-lecture LAMS participation dropping as the semester progressed. For BFW, 80% of students voluntarily participated in the pre-lecture LAMS activity. In-class surveys indicated that the students believed LAMS helped them process concepts by building on previous knowledge in a stepwise manner, enabled them to apply their knowledge and helped with revision. Student participation in LAMS activities was related to the “value” of activity. Participation was high (96%) for activities that were assigned marks (even 1%) or were compulsory for attendance at laboratory practicals. In APBII the pre-practical LAMS activities were worth 10% of the report, this incentive resulted in 100% participation in the LAMS component.

The presentation of information in LAMS improved engagement; MCQ’s that reveal answers after attempts provide instant formative feedback, survey questions stimulate class discussion and open question-and-answers with hints are useful for students to see their peers’ responses.

In summary, LAMS is an interactive way of presenting information to students online. It allows flexible learning because it can be accessed anytime where internet access is available, making it a suitable eLearning tool for assisting lecturers to “flip” the classroom.

REFERENCES

KEY WORDS: Learning Management Activity System (LAMS), eLearning, Flipped classroom
Designing a transcultural learning environment with a diversity of background: encounter with e-learning and face to face communication.

Akiko Tomita Centre for Asian Studies, School of Social Sciences, Faculty of Humanities and Social Sciences, University of Adelaide

Intercultural language teaching and learning in language education has, over the past twenty years, become an important tool for language teachers. This shift has coincided with a vast increase in international exchanges of persons and ideas between universities and the heightened impact of globalisation on tertiary institutions. Within this time, technology and online learning has played a steadily increasing role in education and presented many new challenges and opportunities for language educators whilst, at the same time not diminishing the importance of traditional, face to face communication in learning a language.

This paper draws on recent work on Japanese language teaching and learning from an intercultural and transcultural perspective with first year students from the course Japanese1A: Beginners I, at the University of Adelaide. With a teaching team of the five Japanese native speaker tutors, the researcher as coordinator of the course created the transcultural component to involve teaching staff from target language background and students from a vast diversity of cultural background.

With a student group of over 280 students this is the largest language course at the University of Adelaide. Of these, approximately 50% of students were local students of diverse of heritage as one would expect in a multicultural society like Australia and the other 50% were international students from China, Hong Kong, Malaysia, Singapore, South Korea, and Vietnam, France and Brazil. In creating this transcultural component the researcher utilised this diversity as an educational resource, forcing students to not only consider the relationship between their own and Japanese culture but also how other cultures; specifically those of their peers, related to Japanese and their own culture. A key goal of this was to encourage interaction between students of differing cultural groups; something which the researcher noted from past experience was not always guaranteed, as a willingness to engage with other cultures is essential for effective language learning.

Liddicoat’s (2008) framework of intercultural language teaching and Cadman and Song’s (2012) ‘transcultural pedagogy’ were considered in designing curriculum for this course and learning activities with e-learning group discussion and face to face group discussion were utilised to enable students to develop expertise in operating successfully within and between different languages and cultures within the context of a Japanese language course. In its implementation, students learned and discovered relationships among the target culture, their own, and their peers’ cultures, producing a much broader understanding of the language’s social relevance as well as expanding student’s world view.

The students’ experiences of engaging with Japanese language and culture on both the Blackboard group discussion board and face to face group discussion in the classroom in order to deepen their intercultural and transcultural understanding will be illustrated from the learner’s point of view using their assessed written reflections as well as questionnaires.

The results have shown that the involvement of Japanese native speakers and approaching intercultural teaching and learning from a non monocultural perspective has positively affected students’ attitudes toward Japanese language learning and helped increase their intercultural and transcultural understanding.

REFERENCES
INTRODUCTION

Whether we are concerned with face to face learning in brick structures or any form of digitally mediated online or blended learning, assessment is a critical part of our higher education teaching programs. In order to ensure the quality of the assessment process, moderation of the assessment is commonly employed. We chose to use the Garlick and Pryor (2004) model of benchmarking in this project, because of its focus on the professional learning at the coalface rather than on institutional appraisal. We sought to understand and develop improvements to assessment moderation quality in small private higher education institutions.

The first project phase of the assessment moderation benchmarking has now been concluded, where the present practice was examined by interviews and document analysis in two disciplines, theology and education, in four institutions across four states. This information is then analysed and provided back to the institutions, so that they can review and modify their own assessment moderation processes in view of the combined results from the eight sites. These modifications will then be implemented and the modified assessment programs will be evaluated in the final stage of this benchmarking process.

Thus in this research project the staff teaching the courses and in charge of their implementation and quality control are the key players in the process. They furnish the information about the existing practice, consider the combined assessment moderation practice report from the eight individual sites and review their own practices in order to improve them. They will then implement the assessment improvements they have devised and finally they provide the information for the evaluation on the changes made to their processes.

On the basis of the data gathered in the first stage of the project we can report on how academics in education and theology view assessment moderation:

(1) It is concerned with fairness and equity in assessment – at least ten aspects were identified.

(2) It is regarded as a form of quality assurance and accountability – thirteen aspects of assessment moderation as quality assurance were articulated, four aspects of accountability, two aspects relating assessment moderation to teaching and three aspects about how assessment moderation can be seen as a means to achieve success in teaching and learning.

(3) It is concerned with comparability of assessment across boundaries – firstly, eight aspects of internal institutional comparison were articulated, nine aspects of inter-institutional comparisons and finally how assignment moderation helps to align the educational programs with the disciplines.

(4) It is viewed as a learning and research process for academics for academics aiming to improve their assessment – eleven ways in which assessment moderation contributes to academic learning were identified, four ways in which assessment moderation links with research and two ways in which assessment moderation contributes to the goal of improvement of assessment.

(5) Finally, five characteristics of assessment moderation were also identified.

This wide range of assessment moderation perspectives provides a springboard for academics from small and large institutions to review their personal and institutional understandings of the assessment moderation processes. These findings will also contribute to the conversation about how assessment in general can be improved in either brick or digital learning environments.

REFERENCES

Interactive e-learning resources for the development of diagnostic abilities and research skills

Daniel Walker School of Earth and Environmental Sciences, The University of Adelaide
John Conran School of Earth and Environmental Sciences, The University of Adelaide
Colin Trengove School of Animal and Veterinary Sciences, The University of Adelaide
Beth Loveys School of Agriculture, Food and Wine, The University of Adelaide
Amanda Able School of Agriculture, Food and Wine, The University of Adelaide

KEY WORDS: e-learning, diagnostic ability, inquiry-oriented learning, research skill development

An ability to diagnose and then solve problems is integral to the success and employability of Science graduates, and in particular, for applied vocations such as veterinary medicine and agriculture (McSweeney & Rayner, 2011). This often relies on an ability to source and analyse disparate information in that discipline quickly. Students may also be required to draw upon certain research-related skills such as planning and managing an experiment; collecting, analysing and interpreting data independently; and presentation of those results in the context of the literature to fellow professionals. Because research (and diagnosis) is by its very nature open-ended, students need to learn how to participate in the process to be successful (Wright & Boggs, 2012). Process skill development is therefore an essential component of improving student ability to research (DeBurman, 2002) and diagnose (O’Neill & Dluhy, 2008). However, students often need very clear guidance and scaffolding in the development of these skills (DeBurman, 2002; Willison, 2012; Wright & Boggs, 2012).

We have therefore aimed to produce two sets of interactive and integrated e-learning resources that help students in an inquiry-oriented setting: the first aims to develop and reinforce diagnosis pathways, with a particular emphasis on plant identification; and the second has been used to provide appropriate scaffolding to develop research potential in second year plant biology students. By assembling information and providing links to already existing resources, students are able to engage with the material when it suits them and rather than overloading them with knowledge (as current resources do), we are teaching our students how to source information, analyse information and diagnose problems efficiently and effectively. We have developed online tutorials using the Articulate program, Storyline, because it allows multiple interaction opportunities between the learner and the resource.

The e-learning resource developing diagnosis ability, specifically, is currently being evaluated by focus groups for its interactivity and impact on students’ ability to learn the skills needed for plant identification. Results from these focus groups will be presented.

Second year students that used the resource for research skill development in the second year course Foundations in Plant Science indicated via confidential 5-point Likert-type surveys that along with face-to-face tutorials, having an interactive e-learning resource was useful. We saw an improved ability of students to analyse their data, access information and discuss it in the biological context, when compared with the year before (where students did not have access to the e-resource). Others have also reported that scaffolded opportunities to develop these skills in context, can improve student performance accordingly (Reyner, 2012).

Students’ perceived abilities in discovery of appropriate literature, the use of statistics and formulating questions significantly increased as did their confidence in diagnosis, performing research and questioning accepted dogma. However, those students who indicated they were not really interested in plant biology did not engage with the resource while all students indicated they were pressured for time. Students generally believe in ‘economy versus effort’ and our studies as well as others have shown that inquiry-oriented learning needs time (Mears, 2013). In general, access to the e-learning resource appears to have improved the performance of students against a set of rubrics for the research project. The challenges of providing appropriate scaffolding to develop research potential and diagnostic capabilities of second year plant biology students will be discussed in this presentation.
REFERENCES

NOTES:
Parallel Universes: Student-Teacher Expectations and Interactions in Online vs On campus teaching and learning environment

Thomas Wanner Geography, Environment and Population, School of Social Sciences, University of Adelaide

In Australia, reflecting global trends, e-learning or online learning is becoming increasingly prominent in tertiary education with Australian universities providing more online courses and degrees, and more students enrolling in online courses (Norton, 2013). E-learning “refers to the use of information and communications technology (ICT) to enhance and/or support learning in tertiary education” (OECD, 2005: 2). There is much debate about the role of online or distance education or blended learning courses for improving the student learning experience (Alan and Sherman, 2013; Bach et al., 2007). What is clear is that student success and satisfaction in the online learning environment mainly depend on what happens in the online environment (Thurmond et al., 2002). This means that the course design and the role of the online facilitator is crucial for achieving learning outcomes and student engagement and success (Faculty Focus, n.d.; Tuovinen, 2000; Martens et al., 2007).

Taking a course from the face-to-face level of teaching to the online environment or designing a new course for just the online environment can be a very challenging task for higher education teachers (Herman and Banister, 2007; Redmond, 2011). The online teaching and learning environment requires not only a more complex and different set of skills, activities and interactions than the face-to-face learning environment (Bennett and Lockyer, 2004; Park et al., 2013; Redmond, 2011; Tuovinen, 2000) but a paradigm shift of the teaching pedagogy and approach for which most University educators are neither prepared nor adequately trained for (Allan and Seaman, 2013). The varied roles and skills required of the teacher in an online or e-learning environment such as ‘e-moderator’ (Salmon, 2003), content facilitator (Park et al., 2013), or designer, assessor or technologist (Bennett and Lockyer, 2004) makes teaching in the online environment more challenging but not necessarily less rewarding.

This paper is situated in this relatively new space between face-to-face/blended/online learning in the higher education sector in Australia. It is based on my critical reflections as a University teacher of taking one of my long established and highly successful on campus (face-to-face) courses called ‘Environment and Development’ for the first time into the online environment as a completely online course. The on campus course was run at the same time as the online course (Semester 1, 2013). It is argued, that the success and effectiveness of online courses, depend to a large degree on bringing together the two parallel universes outlined in this paper: (i) of different expectations about course delivery, teaching, assessment, feedback and interactions that exist between teachers and students in the online environment; and (ii) the different pedagogical dimensions and requirements of a face-to-face university course in contrast to an online course. We need to better understand these parallel universes in order to design engaging, interactive and effective online courses.

Comparisons between the online and on campus courses (based on student evaluations and feedback) are drawn to provide valuable lessons and strategies for higher education teachers who intend to move into the online learning and teaching environment and need to merge the two ‘parallel universes’. The paper is grounded in literature about the pedagogical similarities and differences between face-to-face and online courses (for example, Herman and Banister, 2007; Martens et al., 2007; West, 2011). Strategies are suggested which go beyond the standard literature’s guidelines for effective online teaching, such as online presence of the teacher and creating good online learning communities (Boettcher, 2011; Faculty Focus, n.d.).

REFERENCES

Evaluation of Facebook © to Create an Online Learning Community in an Undergraduate Animal Science Class

Alexandra L Whittaker The University of Adelaide
Gordon S Howarth The University of Adelaide
Kerry Lymn The University of Adelaide

KEY WORDS: Self and peer assessment, Group-based projects, MyUni

INTRODUCTION
Technologies used in learning are increasingly available to the masses and focused on collaboration and interactivity (Squires, 2000) and hence are well equipped to promote a social constructivist educational approach. Such an approach is student-centric by focusing on dialogue, and collaborative construction of knowledge through peer and instructor co-learning. There has been widespread comment on the use and impact of Web 2.0 technologies in education. This has led to increased research focus into both the effects on education of Facebook use in general, and the potential of social networking to improve conventional educational interactions. Many of these studies have investigated the general use of social networking sites (SNS) in providing collegial support and enhancing networking opportunities (Bosch, 2009; Madge, Meek, Wellens, & Hooley, 2009; Wodzicki, Schwämmlein, & Moskaliuk, 2012). Wang (2012) showed that Facebook was a useful tool for cross-cultural collaboration between groups of international students but required much individual effort to maintain friendship. Facebook has also found utility in an institutional context as a way of maintaining communication and group cohesion following natural disaster in the wake of the 2010 Canterbury earthquake (Dabner, 2012). The work of Junco (2012) illustrated a complex relationship between use of Facebook and levels of institutional student engagement depending on the technological applications used. One study performed a qualitative investigation into students’ use of Facebook in an online community setting designed to encourage collaboration and support whilst students were on an external teaching practicum placement (English & Duncan-Howell, 2008), but in general there is a dearth of published literature on specific uses of Facebook in tertiary education.

This paper provides a preliminary investigation into the success of Facebook as a tool for formation of an online learning community amongst a group of 3rd year undergraduate science students participating in a face-to-face class at the University of Adelaide.

METHODOLOGY
The Facebook group was set up by the lecturer as a “closed group”, and two “administrators” who were both involved in the course delivery were appointed. The Facebook page ran parallel to the standard Learning Management System site (Blackboard) page throughout the semester. No marks or requirement to engage in page discussions were assigned since the study aim was to evaluate whether a spontaneous online community could be seeded using the Facebook technology. A quantitative examination of participant numbers and traffic on the site was undertaken. In order to determine functionality of the group, a semi-qualitative examination of category of response posting was also performed.

RESULTS/DISCUSSION
Community penetration into the class was high (95%) but active student participation rate was lower (78%) The mean number (± SD) of posts was 18.0 (± 13.3). Five broad themes were identified which best described the type of comment posted. In order of frequency the number of comments within each theme were: other (n= 284), problem solution (n=198), course content query (n=94), administrative query (n=69) and joke (n=40). The majority of posts were associated with the types of skills one generally associates with the establishment and maintenance of social relationships. These include reassurance and encouragement statements, statements of thanks and finding commonality of ground. This also reinforces the sense of community that appears to have developed. There were a number of comments implying a perceived greater value of the page over the standard university Blackboard course site, and other communication methods utilized. This is a key finding both for academics administering courses and in a broader university context for administrators looking for effective student communication strategies. There was also an increase in activity on the pages within close proximity to assignment hand-in dates when rapidity of solution would be of greater importance.
It was concluded that Facebook is a promising tool to establish an online educational community under the conditions imposed in our study. The main benefits are in establishment of affective communication, social support and a problem solving strategy.

REFERENCES

NOTES:
My Wine World: Development and evaluation of an iPad application as an e-learning tool for technical wine assessment

Kerry Wilkinson Senior Lecturer of Oenology, The University of Adelaide
Paul Grbin Senior Lecturer of Oenology, The University of Adelaide

KEY WORDS: assessment, e-learning, iPad application, technology, wine education

Objective training in technical wine evaluation is a critical component of wine education, because wine appearance, aroma, taste and mouthfeel, i.e. the sensory attributes of wine, drive quality and consumer acceptability. Technical wine evaluation therefore features prominently in wine education programs, including those at the University of Adelaide, where oenology and wine business students alike, learn to: (i) objectively describe the sensory attributes of wine; and (ii) differentiate wines on the basis of grape variety, style and quality.

Technical wine evaluation involves recording detailed observations and perceptions of wine sensory attributes, i.e. tasting notes. Students’ sensory skills, i.e. their ability to recognise and describe wine sensory attributes using formal descriptive language, are developed during wine tasting practicals and assessed based on the quality of tasting notes; both the level of detail recorded and the range of descriptive language used. However, a significant proportion of students’ tasting experience takes place outside the classroom, and thus, is never evaluated; particularly as a function of learning, i.e. throughout their degrees.

Technology is increasingly being utilised in learning and teaching. Examples of e-learning applications include social networks, discussion boards, wikis and even virtual worlds; the use of which are considered to facilitate student participation, critical thinking and reflection (Vallance 2008, Yang et al. 2008). The advent of tablet computers offers convenient, electronic platforms with which highly functional applications can be developed, to facilitate flexible and adaptive approaches to learning and teaching (Manuguerra and Petocz, 2011), or mobile learning: ‘the ability to learn within one’s own context when on the move in time and space’ (Melhuish and Falloon, 2010).

This presentation will describe the development of My Wine World, an iPad application specifically designed in response to wine science academics’ need for an educational tool that can both develop and demonstrate the sensory skills and experience of oenology and wine business students. My Wine World comprises a wine tasting tutorial which guides students through wine assessment, as taught in sensory practicals. It uses touch tools such as colour displays, sliders and input screens to record students’ tasting notes in a searchable, downloadable archive. It also incorporates a glossary of sensory descriptors, enabling students with limited wine experience who tend to overuse broad descriptors (e.g. fruity or oaky), to improve their vocabularies, and therefore, their learning experience.

My Wine World is intuitive to use and it offers many of the affordances recommended of mobile technologies for education; i.e. portability, ubiquitous access, situated learning opportunities and personalised experiences (Melhuish and Falloon, 2010). The potential for the App to be used both in and out of the classroom will be discussed. The App’s impact on student learning, specifically, its ability to (i) improve students’ wine vocabularies and willingness to participate in class discussions and (ii) assess students’ sensory experience (both the range and frequency of wines tasted and the quality of tasting notes recorded) throughout their degrees, will also be presented.

REFERENCES
NOTES:
Outcomes of the scaffolded development of research skills across degree programs

John Willison Senior Lecturer, School of Education, University of Adelaide

Open information access presents the risk of students being gullible consumers rather than critical users in the information age. Open inquiry modes of learning present the risk of students engaging with the same degree of sophistication in their final year as in their First Year of studies (Chaplin, 2003). Open access to university courses presents the risk of underprepared students not only struggling with their own coursework but also negatively influencing others in their courses. All three risks converge in many Australian universities, because expanding student numbers is driving universities to an efficiency-first orientation to online and mobile environments, rather than a strong pedagogical orientation.

This presentation focuses on the outcomes of a study in which academics have been managing these contemporary risks with a conceptual model for learning and teaching, the Research Skill Development framework (RSD: Willison & O’Regan, 2007). The academics have used the RSD to scaffold student learning and assessment across degree programs representing each major faculty grouping. The study was funded by an Innovation and Development grant provided by the Office of Learning and Teaching.

The study has found that when multiple courses in a degree program have used the RSD to make research skill development explicit, coherent and incremental through learning tasks and assessments, then the long-term outcomes for students have been largely positive. This has been evident in semi-structured interviews with students one year after they have completed three years of an undergraduate degree. Students indicated in their employment contexts or in their Honours research that a focus on the scaffolded development of research skills across the degree was important for their long term learning and for the applicability of these skills to their new employment and research contexts. Students indicated too that they had become discerning users of information, rather than gullible consumers, in part due to the development of their research skills.

Scaffolded research skill development was provided for all students in some large first year courses, enabling the under-prepared to be better prepared (Willison, 2012) for the more demanding second year courses in their degree than would have been the case otherwise. Evidence from interviews suggested that when there was a coherent thread of research skill development enabled by the RSD framework and employed in multiple contexts and courses, then the clarity of skill requirements enabled students to ramp up their own research capacity. Nevertheless, not all students were satisfied with, or convinced about the benefits of research skill development across the undergraduate years, and stated disadvantages will also be presented.

Overall, the study found strong parallels with skills associated with researching, critical thinking and problem solving, suggesting the need to present students with the cognitive connectedness between these ways of thinking and acting, while maintaining the differences in nuance. The use of the RSD by academics to scaffold the curriculum design and assessment of multiple courses of a degree program provided a coherence that facilitated a dynamic skill set that is vital for the information age and relevant both to employment and to further research degrees.

REFERENCES

NOTES:
Honours projects in the Faculty of ECMS are usually conducted by groups of students who work with an academic supervisor in a chosen area for one year. The groups, usually ranging between two and 20 students, mainly run the project autonomously, making it somewhat difficult to fairly assess the contribution of individual students to the project. Tools such as SPARK have been used for self and peer assessment of group-based Honours projects for many years but this process is time consuming and requires a high degree of manual effort to create the forms and then post process the data (Freeman and McKenzie 2002; Willey and Gardner 2009; Wu, Chanda and Willison 2012). What is needed is an online tool that automatically assists in the self and peer assessment process.

In this paper the use of Blackboard (the University of Adelaide’s chosen LMS and branded as MyUni) as an easy online tool for self and peer assessment of Honours projects is explored.

It was found that “Self and Peer Assessment” in MyUni does not offer the features that are needed. “PeerMark” from Turnitin Assignment in MyUni could offer the features for the self and peer assessment that are required, however, it is too time consuming to set up the assessments using “PeerMark”. Furthermore it only provides review questions with scale levels of 1-5 and does not support other ranges, for example a 1-100 scale.

It was found that “Test” in MyUni can offer the features that the ECMS faculty needs for self and peer assessment of group-based Honours projects. “Test” in MyUni allows the students to input their group number and the names of their group members as questions for self and peer assessment. The standard academic rating scales together with the guidelines for students rating the standard academic rating scales against the self and peer assessment (SPA) criteria can also be input into “Test” as questions. Thus students rate each other over the SPA criteria to provide 1-100 numbers through answering the scale review questions so as to produce self and peer assessment data. After the process of self and peer assessment has completed, a spreadsheet of the responses can be exported to calculate the SPA and SAPA (Self-Assessment to Peer Assessment) factors. A successful trial of the “Test” in MyUni has been used for self and peer assessment of Honours research projects in the School of Civil, Environmental and Mining Engineering in semester one this year. The results are very promising, indicating that MyUni can be used to develop teamwork skills for group-based Honours research projects with the online self and peer assessment tools, definitely enhancing e-learning and teaching technology in The University of Adelaide.

REFERENCES

Experiences in MOOCs: The Students’ Perspective

Samar Zutshi Program Director, Swinburne Online, Melbourne
Sheena O’Hare Program Director, Swinburne Online, Melbourne
Angelos Rodafinos Program Director, Swinburne Online, Melbourne

Massive Open Online Courses (MOOCs) are generating a lot of hype in mass and social media (Daniel, 2012; Educause 2012). The term MOOC is often traced back to a course run in 2008 on Connectivism and Connective Knowledge (see, e.g., Mackness, Mak, & Williams, 2010) that allowed anyone to participate in the course alongside a small number of for credit students. A lot of research on MOOCs is generated from student feedback surveys (e.g., MOOCs@Edinburgh Group, 2013). There is evidence to suggest that student learning outcomes from online learning are comparable to those from face-to-face learning (Means, Toyama, Murphy, Bakia, & Jones, 2010). However, little is currently known about student perceptions of online learning through MOOCs focusing on blogging platforms as the source of information. Blogs provide an easy to use platform for the voicing of opinions in a form intended for wide consumption, and can be a rich source of data (Papacharissi, 2002, 2007). The aim of this study was to explore the experiences of students who have participated in MOOCs as reflected in public blogs. Specifically, this study examined the sentiments, common issues and discussion themes that bloggers post about. Method: The results of an initial Google blog search were narrowed down to a sample of 21 blog posts written by MOOC participants. A content analysis approach was used to analyse the sample of blog posts. Nine a priori categories were employed to categorise specific comments from the blogs. These categories were based on the Quality Matters (2011) Rubric. The blogs were read and examined for these categories by coders, and each post was classified as positive, negative, mixed, or neutral. After analysing the blogs, four of the nine categories appeared to be predominant in the blog posts; these were Assessment and Measurement, Instructional Materials, Learner Interaction and Engagement and Course Technology. In addition, three emergent categories of comments were identified: student motivation for taking the MOOC; positive aspects of the student experience; and thoughts on improving the MOOC.

Results: The results provide a glimpse into the student experience, including why students take such courses, what elements of their experience are positive and what can be improved from the student point of view. Among the findings are: being able to manage the workload is key to a positive student experience; the scale of MOOCs means that non-robust course design can cause spectacular failures from a student experience point of view; and authentic assessment design can result in very powerful student experiences. It was also interesting to note that a significant component of the motivation to take a MOOC related simply to evaluating them and seeing what they were like. While the data set is small, the results do suggest that the overall student experience is mixed rather than broadly positive (providing a counter point to the hype). The detailed findings are likely to be of interest to those interested in participating in, developing and teaching MOOCs generally and online courses more broadly.

REFERENCES